Part X – October 1968 - Papers - The Free Energy of Formation of ReS2

The American Institute of Mining, Metallurgical, and Petroleum Engineers
Juan Sodi John F. Elliott
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
3
File Size:
206 KB
Publication Date:
Jan 1, 1969

Abstract

The standard free energy of ReS2 has been measured in the range of 1050° to 1250°K using H2/H2S mixtures and a slight variation of the method described by Hager and Elliott.1 The result is: The experimental method and apparatus were modified slightly for this study. Measurements on Cu2S were made to verify the application of the method to the work on ReS2. THE EXPERIMENTS AND RESULTS Briefly, the experimental method consisted of exposing a chip of copper or rhenium at a known temperature for 8 hr to a slowly flowing gas stream at the same temperature in which Ph2S and PH2 were known. The chip was withdrawn quickly from the hot furnace, and subsequently it was inspected for the presence of a sulfided surface. In the experiments described here, there was no ambiguity in any case as to the presence or the absence of the sulfide. At a given temperature, gas compositions for sulfidization were explored systematically until two compositions were found whose values of ?G°, Eqs. [I] and [2], were within approximately 100 cal of each other, one of which was sulfi-dizing and the other was not. These are termed the "straddle" compositions and it is assumed that the equilibrium composition lies between them. The chief modification to the apparatus, which is shown schematically in Fig. 1 of Ref. 1, was to support the metal specimen on a small alumina boat which could be moved along the reaction tube, 6 mm ID, by platinum wires. An appropriate seal at each end of the reaction tube permitted the sample to be moved from the cold end of the tube into the hot zone in 2 to 3 sec, and the sample could be withdrawn equally rapidly. Thus, it was possible essentially to quench the specimen from the reaction temperature with the reaction gas or helium flowing and without danger of breaking the reaction tube. The usual practice at the end of the experiment was to switch the gas system to the helium tank, flood the reaction chamber with helium, and pull the sample out of the hot zone. The purpose of the modification was to permit study of the sulfidization of copper without the complication of the back-reaction between the gas and the specimen as the latter cooled during slow withdrawal of it from the hot zone; this was a problem in the earlier work.&apos; A further improvement located the tip of the temperature-indieating thermocouple and the specimen precisely at the hottest part of the furnace. A carefully calibrated thermocouple, with its tip at the position of the specimen and with other conditions duplicating those of an actual experiment, showed that in the temperature range of 900° to 1122°C the temperature of the specimen differed from that of the tip of the indicating thermocouple by less than 0.5°C. The two positions were 0.5 cm apart. The reaction gas was prepared from ultrahigh-purity hydrogen (<l ppm O2, <0.5 ppm H2O) and CP grade hydrogen sulfide (99.5 pct H2S). High-purity helium (99.995 pct He) was used. All of these gases were purchased from the Matheson Co. All flow meters were recalibrated by the soap-bubble method with hydrogen, H2S, helium, and several gas compositions used during the study. These calibrations gave a linear relationship with a slope of 1.0 for the plot of log flow rate vs log pressure drop across the flow meter, in accordance with the Hagen-Poiseuille equation. The analysis of the gas was determined in the same manner as was reported previously. Good checks were obtained between the composition of the gas established by the flow-meter settings and by chemical analysis of the gas taken after the mixing bulb and ahead of the furnace. The pressures of H2S, H2, S2, and HS in the equilibrium gas at temperature were calculated from the following data :3 The pressures of the species S and S8 were negligible for the conditions of the experiments.3 There was no sign of vaporization of ReS2 either by weight loss or deposits in the reaction tube. Thus it is not possible to account for the apparent volatility of the compound reported by Juza and Biltz.2 The inlet gas composition and the calculated equilibrium ratio of PH2 S/PH2 for the "straddle" points of each experiment are shown in Table I. The specimens of metal for the experiment were small clippings of annealed copper (99.9+ pct) sheet 0.005 in. thick that was obtained from Baker and Adamson and of "high-purity" rhenium (99.9+ pct) sheet 0.005 in. thick that was purchased from Chase Brass and Copper Co. A specimen was removed from the apparatus; inspected for the presence of the sulfide, and then stored in a sealed vial. A fresh clipping was used in each measurement. The condition of the surface of each specimen after the experiment is noted in Table I.
Citation

APA: Juan Sodi John F. Elliott  (1969)  Part X – October 1968 - Papers - The Free Energy of Formation of ReS2

MLA: Juan Sodi John F. Elliott Part X – October 1968 - Papers - The Free Energy of Formation of ReS2. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1969.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account