Part X – October 1968 - Papers - The MnTe-MnS System

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 2
- File Size:
- 170 KB
- Publication Date:
- Jan 1, 1969
Abstract
The phase relationships of the MnTe-MnS system were studied by DTA procedures. There is an eutectic at 810°C with about 10 mole pct MnS-90 mole pct MnTe. An eutectoid occurs at about 710°C with approximately 7 mole pct MnS where the MnTe(NaCl) solid solution dissociates on cooling to MnTe(NiAs) and MnS. There is very little solid solubility of MnTe in MnS. ALTHOUGH MnS may exist in three different crystal forms,' only the NaC1-type phase is stable.2 Above 1040°C, MnTe also has the cubic NaC1-type structure. Below that temperature, MnTe changes to the NiAs-type structure.3 This phase transition is rapid for both heating and cooling. As a result the high-temperature crystal form of MnTe cannot be retained at room temperature. Because MnO, MnS, and MnSe are all stable with the NaC1-type structure, and MnTe has this structure at high temperatures,4 solid solution formation could be expected among these compounds. It is interesting to note, however, that a complete series of solid solutions exist only in the MnS-MnSe system,' and that the solid solution is quite limited in the MnO-MnS system.' The MnSe-MnTe system possesses a complete series of solid solutions at high temperatures with separation at lower temperatures.7 Although ion size may be critical in the miscibility of MnO-MnS, it is quite possible that the bond type plays a more important role with the miscibility of MnSe-MnTe. This would permit us to speculate that the miscibility gap would be extensive in the MnTe-MnS system. EXPERIMENTAL Preparation. The samples were prepared by mixing and compacting MnTe and MnS powders. The MnS was previously prepared through the sulfur reduction of Mnso4.8 The MnTe had been prepared by mixing and compacting double vacuum distilled metallic manganese and high-purity tellurium in stoichiometric ratio modified with 1 wt pct excess tellurium. The compacted powders were put in a graphite crucible which was sealed in an evacuated vycor tube. The free space in the vycor tube was made minimal to reduce the loss of tellurium. The sealed assembly was then heated slowly to about 500° C where the free manganese and tellurium reacted vigorously, melting the MnTe which formed. Only one phase, MnTe, was detected by X-ray powder patterns and metallographic techniques. Each compact of MnTe-MnS was placed in a graphite crucible and then sealed in an evacuated vycor tube. The samples were heated at 1250°C for 4 hr and furnace-cooled. Microscopic examination revealed no third phase beyond MnS and MnTe. A typical microstructure is presented in Fig. 1. Identification. X-ray powder patterns were obtained using 114.6 mm Debye-Scherrer camera and Fe-Ka radiation. Mixtures of cubic MnS and hexagonal MnTe were observed in all of the compositions prepared. No lattice parameter change was noticed among different compositions, indicating no solid solution could be retained at room temperatures between these two end-members. A lattice parameter of 5.244Å for MnS was obtained by the Nelson and Riley9 extrapolation method using the diffraction lines of (h2 + k2 + 12) equal 12, 16, 20, and 24. The values, a = 4.145Å and c = 6.708Å, for hexagonal MnTe were obtained from the (006) and (220) lines in the back-reflection region. These values agree well with the values reported by Taylor and Kag1e.10 Differential Thermal Analysis. A differential thermal analysis procedure was used to determine phase relationships since the high-temperature equilibrium conditions could not be retained for examination at room temperature, even when the sealed samples (~0.5 g) were quenched in water. The samples were sealed in an evacuated 4 mm vycor tube with a recess in the bottom to accept a thermocouple. An Al2O3 reference was similarly prepared and the two placed within a piece of insulating fire brick to dampen spurious temperature changes within the furnace. The furnace was controlled by a mechanically driven rheostat which increased the temperature at a rate of about 15°C per min. Known phase changes in the Pb-Sn system1' and the a-to-ß quartz inversion12 were used for calibration
Citation
APA:
(1969) Part X – October 1968 - Papers - The MnTe-MnS SystemMLA: Part X – October 1968 - Papers - The MnTe-MnS System. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1969.