Part X – October 1969 - Papers - A Study of Embrittlement of a Precipitation Hardening Stainless Steel and Some Related Materials

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 6
- File Size:
- 402 KB
- Publication Date:
- Jan 1, 1970
Abstract
An empirical study of the nature of the embrittle-ment which occurs in martensitic and semiaustenitic precipitation hardening stainless steels upon exposure at temperatures of from about 550" to 875°F has been undertaken. This work was aimed at determining cazusation and means of controlling this phenomenon. A commercial copper bearing precipitation hardening alloy was used as a basic material for study. The effect of heat treatment variables was studied as was the effect of variations in analysis. It is concluded from the evidence that martensitic and semiaustenitic precipitation hardening stainless steels are subject to 885°F ernbrittlement similar to that observed in the straight chromium stainless steels. A characteristic of precipitation hardening stainless steels which has limited their use in certain applications is that they embrittle when held at temperatures in the range of from about 550" to 900°F. This is true to a more or less degree in all currently available alloys, either the basically martensitic type or the semiaustenitic type. The rate of embrittlement varies markedly with exposure temperature, being low at 550" to 600°F and in-creasing as the temperature increases. In spite of this embrittlement, these alloys with their unique combination of high mechanical strength, reasonable toughness, and good corrosion resistance are used in many hundreds of applications. Nevertheless, there are potential applications where the embrittle-ment described is a limiting factor. The purpose of this investigation was to study the embrittlement of these alloys and to find a way to control or eliminate it. GUIDELINES USED IN PRESENT WORK The work reported in this paper is based on a study of 17-4 PH*, a very widely used alloy. It has been used *Trademark of Armco Steel Corp., licensor. in pressurized water and boiling water atomic reactors operating at about 550°F for a number of years. As the life of such equipment is extended or operating temperatures are raised, the possibility of embrit-tlement becomes of increasing concern to materials engineers. Much investigation work was done with respect to the use of 17-4 PH at 550°F. K. C. Antony' states "Such estimation" (of an activation energy for the diffusion of chromium in iron) "would indicate W. C. CLARKE, Jr. is Senior Research Engineer, Advanced Materials Division, Armco Steel Corp., Baltimore. Md. This manuscript is based on a talk presented at the symposium on New Developments in Stainless Steel, sponsored by the IMD Corrosion Resistant Metals Committee, Detroit, Mich., October 14-15, 1968. significant secondary aging is improbable at temperatures less than 700°F within normal component service life". This statement is modified however by the recognition of the accelerating tendencies of applied stress and internal stress as well as the possible effect of irradiation. In this investigation of 17-4 PH, the H 1100 (1900°F-1 hr oil quench or air cool + 1100°F-4 hr-air cool) condition was used, partly because this condition is normally used in atomic reactors. As shown later, the precipitation hardening temperature has no real bearing on the rate of embrittlement. An exposure temperature of 800°F was selected since embrittlement at 800°F is rapid, permitting development of relative data in time periods of 400 to 500 hr. For those not familiar, a nominal present day analysis of 17-4 PH is: C Mn P S SiCrNiCuCbN 0.04 0.30 0.015 0.015 0.60 16.00 4.30 3.25 0.23 0.030 TYPICAL BEHAVIOR OF 17-4 PH Figs. 1 and 2 show the behavior of a commercial heat of 17-4 PH under the conditions defined. Characteristically, 800°F exposure causes a rapid drop in Charpy V-notch impact strength. Tensile and yield strengths gradually increase and a gradual loss of elongation and reduction of area occur, accompanied by an increase in hardness. Notched tensile strength increases to 125 hr exposure and then sharply decreases after exposure for 500 hr. The notched vs un-notched tensile ratio remains virtually constant to exposure for 125 hr (1.67 to 1.56) but drops to 1.15 after 500 hr. Tensile ductility is not alarmingly affected even after much longer exposure times than these. For example, samples aged at 1100°F for 1 hr exposed at 800°F for 4000 hr showed a drop in elonga-tion of from 13 to 11 pct and in reduction of area of from 58 to 37 pct. Notched impact is the property SmIgth KSI 3JJ[/__________^UTS-Nrteh 260 ;/- 240 —^ 200 UTS-Smooth________._, o ioo mo Sob" m Too Hours Exposure Fig. 1—Effect of exposure at 800°F for various times on notched tensile strength and smooth tensile and 0.2 pct yield strength of 17-4 PH in the H 1100 condition.
Citation
APA:
(1970) Part X – October 1969 - Papers - A Study of Embrittlement of a Precipitation Hardening Stainless Steel and Some Related MaterialsMLA: Part X – October 1969 - Papers - A Study of Embrittlement of a Precipitation Hardening Stainless Steel and Some Related Materials. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1970.