Part X – October 1969 - Papers - Mechanisms of Intergranular Corrosion in Ferritic Stainless Steels

The American Institute of Mining, Metallurgical, and Petroleum Engineers
A. Paul Bond
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
8
File Size:
788 KB
Publication Date:
Jan 1, 1970

Abstract

Two series of 17pct Cr iron-base alloys with small, controlled amounts of carbon and nitrogen were vacuum-melted in an effort to detertmine the meclz-uniswls of inter granulur corrosion in ferritic stain-less steels. An alloy containing 0.0095 pct N aid 0.002 pct C was very resistant to intergranular corrosion, even after sensitizing heat treatments at 1700" to 2100o F. However, alloys containing more than 0.022 pct Ni and more than 0.012 pct C were quite susceptible to intergranular corrosion after sensitizing heat treatments at temperatures higher than 1700°F. This corrosion was observed after the usual exposure tests and after potentiostatic polarization tests. Electronmicroscopic examination of the alloys susceptible to intergranular corvosion revealed a small grain boundary precipitate; this precipitate was absent in the alloys not susceptible to such corrosion. Thc electronmicrographs indicate that intergranu1ar corrosion of ferritic stainless steels is caused by the depletion of chromium in areas adjacent to precipi-tates of chromium carbide or chromium nitride. It also seems likely that the precipitates themselves are attacked at highly oxidizing potentials. Confirma-tion of the proposed mechanisms was obtained in tests on air-melted ferritic stainless steels containing titanium. The titanium additions greatly reduced susceptibility to intergranular corrosion at moderately oxidizing potentials but had no beneficial effect at highly oxidizing potentials. A major obstacle to the use of ferritic stainless steel has been their susceptibility to intergranular corrosion after welding or improper heat treatment. It appears that sensitization of ferritic stainless steel occurs under a wider range of conditions than for austenitic steels. In addition, a greater number of environments lead to damaging intergranular corrosion of sensitized ferritic stainless steels than to sensitized austenitic steels. The chromium depletion theory of intergranular corrosion is widely accepted for austenitic stainless steels'" although there: are some objections.3 On the other hand, several alternative mechanisms proposed for ferritic stainless steels include precipitation of easily corroded iron carbides at grain boundaries,' grain boundary precipitates that strain the metal lat-tice,5 and the formation of austenite at the grain bound-arie.6 The application of the chromium depletion theory to ferritic stainless steels has been discussed extensively by Baumel.7 The present investigation was undertaken to determine which of the proposed mechanisms can be sub- A PAUL BOND IS Research Group Leader, Climax Molybdenum Co of Michigan, Ann Arbor, Mich. stantiated with experimental data obtained on ferritic stainless steels. High-purity 17 pct Cr alloys containing small controlled additions of carbon or nitrogen were therefore prepared, and then examined electro-chemically and metallographically. EXPERIMENTAL PROCEDURES Materials. Two series of experimental alloys were prepared from electrolytic iron and low-carbon ferro-chromium using the split-heat technique. In this technique, the base composition is melted, and part of the melt is poured off to produce an ingot. To the balance of the melt, the required addition is made and the next ingot cast. This process is repeated until a series of the desired compositions is cast. By this procedure the impurity levels are essentially constant within each series. All the alloys in the carbon-containing series were melted and cast in vacuum. The base composition in the nitrogen series was melted and cast in vacuum; subsequent ingots in the series were melted with additions of high-nitrogen ferrochromium, and cast under argon at a pressure of 0.5 atmosphere. Two additional alloys were produced starting with normal purity materials. They were induction-melted while protected by an argon blanket and cast in air. Table I gives the composition of the alloys. The 2-in.-diam ingots produced were hot-forged and hot-rolled to a thickness of 0.3 in. and then cold-rolled to 0.15 in. All specimens were annealed at 1450°F for 1 hr. The indicated sensitizing heat treat-s s ments were performed on annealed material. All heat treatments were followed by a water quench. Specimen Preparation. For the 65 pct nitric acid test, 1 by 2 by 0.14-in. specimens were wet-surface ground to remove surface irregularities and polished through 3/0 dry metallographic paper. For the modified Strauss test, $ by 3 by 0.14-in. specinlens were similarly prepared. Immediately prior to testing, the Table I. Compositions of the Alloys Composition, pct Alloy Cr hio C N 270A 16.76 0.0021 0.0095 270B 16.74 0.0025 0.022 270C 16.87 0.0031 0.032 270D 16.71 0.0044 0.057 271A 16.81 0.012 0.0089 27 IB 16.76 0.018 0.0089 271C 16.69 0.027 0.0085 271D 16.81 0.061 0.0O71 4073' 18.45 1.97 0.034 0.045 4075† 18.5 2.0 0.03 0.03
Citation

APA: A. Paul Bond  (1970)  Part X – October 1969 - Papers - Mechanisms of Intergranular Corrosion in Ferritic Stainless Steels

MLA: A. Paul Bond Part X – October 1969 - Papers - Mechanisms of Intergranular Corrosion in Ferritic Stainless Steels. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1970.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account