PART XI – November 1967 - Papers - Constitution of Niobium (Columbium)-Molybdenum- Carbon Alloys

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 13
- File Size:
- 3059 KB
- Publication Date:
- Jan 1, 1968
Abstract
The ternary-alloy system Nb-Mo-C was investigated by means of X-ray, melting point, DTA, and metallo-graphic techniques; a complete phase diagram for temperatures above 1500°C was established. Above 1960°C, niobium monocarbide and the cubic (Bl) high-tenzperature phase in the Mo-C system form an uninterrupted series of solid solutions. The ternary range of the pseudocubic q MoCl-, is very restricted. Dimolyb-denum carbide dissolves up to 44 mol pct Nb2C (2240°C), whereas the maximum solid solubility of MO2C in Nb2C does not exceed 5 mol pct. The order-disorder transformation temperatures in Mo2C and Nb2C are lowered by the mutual metal exchanges. Six invariant (p = const) reactzons occur in the ternary system; three correspond to class 11-type four-phase reactions involving a liquid phase, one to a class I (eutectoid)-type, and two further isotherms are associated with limiting tie lines. The results of the Phase diagram investigation are discussed, and the thermodynamic interpretation identifies the low relative stability of the binary sub-carbides in conjunction with the large stability diflerences between niobium and molybdenum carbides as the cause for the formation of a stable equilibrium between the monocarbide and the metal phase in the ternary reson. Due to their refractoriness, the carbides of the high-melting transition metals have received increased interest in recent years as base materials in composite structures for aerospace applications at high temperatures and for the development of self-bonded cutting tool materials; other novel fields of application include power reactors, where operation at high temperatures becomes essential for attaining high power efficiencies. In these applications, the increased reaction rates at high temperatures require a close consideration of the chemical interactions between the alloy constituents. As a consequence, a detailed knowledge of the phase relationships in the alloy systems is required in order to provide a sound basis for developmental -type work. Partly as a result of the considerable experimental difficulties associated with the investigation of this high-melting alloy class, no complete studies of ternary metal-carbon systems have been performed until recently. Even the high-temperature phase relationships in the binary transition metal-carbon systems have been delineated only during the past few years to a degree of accuracy required for a more detailed study of ternary or higher-order alloys. In recent investigations of binary and ternary systems of refractory transition metals with carbon, boron, and silicon,' alloys from the ternary systems Nb-Mo-C became of interest because of the demonstrated possibility2,3 of obtaining compatible composites based on metal + monocarbide combinations. In the meantime, however, studies in other, but related, ternary metal-carbon systems, such as Ta-W-C, have shown that the solid-state equilibria may change significantly toward higher temperatures (>2000°C), and that extrapolations based on low-temperature equilibrium data are, in general, not very reliable. Although the lower-temperature (<2000°C) phase relationships in the Nb-Mo-C system are similar to those found in Ta-W-C, a cursory thermodynamic analysis of the equilibria indicated4 that complete solid-solution formation between Mo2C and Nb2C should not occur at higher temperatures. The present work was conducted in order to experimentally verify these expectations and, in addition, to provide phase equilibrium data in the melting range of the alloys. In the boundary systems, niobium and molybdenum are known to form a continuous series of solid solutions.576 The continuous solubility was also confirmed by Kornilov and Polyakova,7,8 who also observed a minimum melting point at 22 at. pct Mo and 2345°C. The phase diagram investigations of the Nb-C system by Storms and Krikorian9 and Kimura and Sasaki10 were recently supplemented by Rudy et al.11,12 The system contains a high-melting monocarbide with the B1 structure, Table I, and a subcarbide, Nb2C, which exists in at least two different states of sublattice order at low temperatures47"-'3 and a disordered state above approximately 2500°C.11,12 The melting-point measurements by Rudy et al .11,14 are in close confirmation of the data by Kimura and Sasaki.10 The rather complex phase relationships in the Mo-C system were only recently Clarified.15,18 The system is characterized by three congruently melting, intermediate phases, MozC, ? MoC1-x and a Mol-,, Table I, of which only Mo2C is stable at temperatures below 1650°C. Substoichiometric MozC exists in several states of sublattice order which interconvert in homogeneous phase transitions. Hyperstoichiometric compositions cannot exist in the ordered state. Upon cooling through a critical temperature range, the
Citation
APA:
(1968) PART XI – November 1967 - Papers - Constitution of Niobium (Columbium)-Molybdenum- Carbon AlloysMLA: PART XI – November 1967 - Papers - Constitution of Niobium (Columbium)-Molybdenum- Carbon Alloys. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1968.