PART XI – November 1967 - Papers - Diffusion of Palladium, Silver, Cadmium, Indium, and Tin in Aluminum

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 6
- File Size:
- 1876 KB
- Publication Date:
- Jan 1, 1968
Abstract
Using residual activity technique, the diffusion of palladium, silver, cadmium, indium, and tin in alunzinum has been studied in the temperature range of 400" to 630°C. The diffusivities (in units of square centimeters per second) have been expressed as: IMPURITY diffusion in aluminum,1-9 silverand lead5 for cases of low solid solubility of the impurity in the host metal has yielded frequency factors in the range of l0-6 to l0-9 sq cm per sec whereas the activation energy is practically half the self-diffusion activation energy value. From the observed values of frequency factor, activation energy, and entropy of activation, it has been suggested' that these solutes are not diffusing by vacancy or interstitial mechanisms but by a mechanism which should be consistent with such low values of the diffusion parameters (Do and Q). However in spite of extensive work on these types of systems, the mechanism of diffusion is still not well understood. The present investigation on the diffusion of palladium, silver, cadmium, indium, and tin in aluminum has been carried out to throw further light on the diffusion mechanism in systems, where the solid solubility is very low (except for the case of silver). The results are discussed on the basis of solid solubility and the structural changes involved owing to the presence of the solutes in aluminum solid solution. An attempt has also been made to apply the existing theories of charge5-8 and size8 difference between the solute and the solvent. EXPERIMENTAL PROCEDURE Specimens (1/2 in. diam by 3/8 in. high) were machined out of pure aluminum (99.995 wt pct) rod obtained from Johnson Mattheys. They were sealed under vacuum in quartz tubes and annealed at 620° C for several hours; the grains thus developed were sufficiently large to eliminate the possibility of diffusion along the grain boundaries. The flat ends were prepared carefully after polishing as described previously,10 Radioactive nitrates of cadmium, indium, and tin and chloride of palladium containing, respectively, cd115, 1n114, sn113, and pd103 were dissolved in distilled water and mixed with 30 pct acetone. By means of a micropipet a drop of this solution was placed on a smoothly polished and lightly etched surface of the specimen. Due care was taken to see that the solution spread uniformly on the surface of specimen without trickling down its sides. Radioactive silver was elec-trodeposited using a AgCN-KCN bath. The amount of sample deposited in all the cases was not more than 0.1 µ thick. The samples were then sealed in quartz tubes in vacuum. The cadmium samples were sealed in a purified argon atmosphere to avoid evaporation. The samples were then diffusion-annealed. The temperature of annealing varied between 400° and 630°C and was controlled to ±5°C. On heating to -400°C,the deposits of cadmium, indium, and tin, which were of the order of 0.1 p in thickness, were converted to their respective oxides. The contribution of oxygen present in the lattice of aluminum due to these oxides has been calculated and found to be less than 10 ppm in all cases. Oxide method has already been used by other workers11'12 in diffusion studies without any controversy on the issue. However, in some of these investigations, metallic deposition was also tried. The diffusivities calculated from these measurements were found to agree very well with the diffusivities obtained by using the oxide method. Thus it is assumed that the measured diffusivities represent true diffusion coefficients. Since palladous chloride decomposes at about 500°C, the deposited samples which were to be diffusion-annealed below 500°C were heated in vacuum for a very short time at 500°C to allow the decomposition of palladous chloride to palladium metal. Time taken in decomposition of nitrates to oxides and chloride to metal was negligibly small as compared to the period of the diffusion anneals. The residual activity technique13 was used to study the diffusion profiles where thin layers from the specimen surface were removed by grinding it parallel to a flat surface on a 600-grade carborundum paper. The specimen was washed, dried, and weighed, the differ -ence of the weight being the measure of the thickness of the layer removed. After each such abrasion and weighing, the total residual activity on the surface of the specimens was measured by counting 0.656, 0.94,
Citation
APA:
(1968) PART XI – November 1967 - Papers - Diffusion of Palladium, Silver, Cadmium, Indium, and Tin in AluminumMLA: PART XI – November 1967 - Papers - Diffusion of Palladium, Silver, Cadmium, Indium, and Tin in Aluminum. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1968.