PART XI – November 1967 - Papers - Nucleation of RecrystaIIization in Cold-Worked Aluminum and Nickel

The American Institute of Mining, Metallurgical, and Petroleum Engineers
L. C. Michels O. G. Ricketts
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
7
File Size:
1752 KB
Publication Date:
Jan 1, 1968

Abstract

The disorientations between s?nall grains, whose growth has been arrested at an early stage of recrys-tallization, and the deformed matrix in cold-rolled aluminum single crystals were determined using transmission Kikuchi line and electron diffraction patterns. The orientations of the recrystallized grains were found to be random, and the disorientations of these grains with the matrix weve found to be intermediate to large. This leads to the conclusion that the observed vecrystallization began in small areas of large disorientation present in the cold-worked structure. heavily cold-worked thin sections of aluminunz single crystals and of polycrystalline aluminum and nickel were produced directly by a mechanical technique. The specinlens thus prepared were heated with the electron beam to bring about vecrystallization during observation in the electron microscope. Motion pictures taken du.ring heating and the electvon, microg.raphs taken both before and aftev heating allowed the recrystallization process to be traced to its ovigin. Re cvystallized grains originated in very s,mall regions of the cold-worked structure and developed through rapid migration of high-angle boundaries. The boundaries either were present as such in the matrix or were formed out of dense dislocation networks. SIGNIFICANT advances have been made in recent years in the study of nucleation of recrystallization using the technique of transmission electron microscopy of thin metal foils. Bollman1 in a study of heavily rolled polycrystalline nickel found support for the Cahn-Cottrell2,3 theory of nucleation. According to this theory nuclei form by the initially slow growth of subgrains formed through polygonization. During this initial period of slow growth (the incubation period) the migrating boundary of the subgrain increases its disorientation with the cold-worked matrix and thereby increases its mobility to become a rapidly migrating high-angle boundary. Bailey4,5 investigated the annealing behavior of several metals deformed both in tension and by rolling and concluded that recrystallization took place through the migration of high-angle boundaries. With low deformations these boundaries were present in the metal before deformation. With high deformation it was not possible to tell whether the boundaries were pieces of the original grain boundaries or were produced either during deformation or by polygonization during ameal- ing. Direct observation during heating of metal foils indicated that subgrains form by polygonization and grow at an uneven rate. The grain size obtained decreased with decreasing foil thickness indicating that the foil surface resists boundary motion. Votava,6 in heating stage experiments on rolled copper, observed nuclei to appear suddenly and grow in jumps of differing magnitude. However, he found no special dislocation configurations where the nuclei appeared. Fujita,7 as a result of a study of subgrain growth in heavily worked aluminum, concluded that the boundary of a recrystallized grain initially forms from the boundary of a group of subgrains. This occurred by a process of deposition of vacancies and dislocations in the group boundary as the boundaries within the group disappear. HU8,9 directly observed a similar process in heating stage experiments on 70 pct rolled Si-Fe single crystals. The growth of subgrains appeared to proceed by a coalescence mechanism. The observed fading away of the boundary between two subgrains was explained by the moving out of dislocations from the disappearing boundary into the connecting or intersecting boundaries around the subgrains. The subgrain size and degree of disorientation with the surrounding structure were thus increased. With the increase in disorientation occurred a corresponding increase in boundary mobility, which eventually allowed the boundary to migrate rapidly. This process was observed to occur within "microbands" consisting of parallel narrow segments disoriented by a few degrees present in the as-rolled structure. The conclusion of Rzepski and Montuelle10 that growth is preceded by the coalescence of blocks through disappearance of their common boundaries supports this view. In contrast to Hu's coalescence model for nucleation were the conclusions of Walter and ~och.""~ Working with the same material as Hu, of the same orientation and rolled to the same reduction, they concluded that nucleation occurred by the Cahn-Cottrell mechanism. They observed, in agreement with Hu, that recrystallization began in the "microband" regions which they referred to as "transition" bands. Bartuska13 studied subgrain growth in heavily rolled nickel using a beam heating method in the electron microscope. He concluded that nuclei for recrystallization form from the largest most perfect subgrains present in the cold-worked structure by rapid intermittent migration of parts of subboundaries. In rare instances he observed subgrain growth by coalescence. EXPERIMENTAL PROCEDURE The materials used in this study were 99.999 pct A1 supplied by A.I.A.G. Metals, Inc., and 99.999 pct Ni supplied by Johnson and Matthey and Co., Ltd. The Hitachi HU-11 electron microscope, with uniaxial
Citation

APA: L. C. Michels O. G. Ricketts  (1968)  PART XI – November 1967 - Papers - Nucleation of RecrystaIIization in Cold-Worked Aluminum and Nickel

MLA: L. C. Michels O. G. Ricketts PART XI – November 1967 - Papers - Nucleation of RecrystaIIization in Cold-Worked Aluminum and Nickel. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1968.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account