Part XI – November 1968 - Papers - Aluminum Extrusion as a Thermally Activated Process

The American Institute of Mining, Metallurgical, and Petroleum Engineers
Winston A. Wong John J. Jonas
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
10
File Size:
690 KB
Publication Date:
Jan 1, 1969

Abstract

Commercial purity aluminum was deformed by extrusion over the temperature range 320° to 616°C and the strain rate range 0.1 to 10 per sec. Flow stresses and strain rates were calculated from the experimenLa1 ram pressures and speeds. The stress-strain rate-lemperature relationship in extrusion was found to be similar to that in creep. Extrusion, torsion, compression, and creep data extending over ten orders of magnitude of strain rate and over two orders of magnitude of stress were correlated by a single creep equation. It was concluded that hot-working is a thermally activated process, in which the rate-controlling mechanism is either the climb of edge dislocations or [he motion of jogged screw dislocations. The microstructural changes observed during extrusion were consistent with the proposed deformation mechanisms. ALTHOUGH great progress has been made in understanding the technology of extrusion, very little is known about the actual deformation mechanisms operating during flow. Previous accounts describing extrusion have indicated that the relationship between ram speed (V), pressure (P), and temperature (T) can be given as follows:1 V = apb and P = A' exp(-AT). In these equations, a and b are constants which depend on temperature, A' is a constant which depends on ram speed, and A is a "coefficient" with a different value for each metal. Although these equations have fairly wide application, they do not contribute much to a fundamental understanding of the deformation. Furthermore, extrusion has not hitherto been considered as a thermally activated rate process. This lacuna is surprising because hot-working is similar to high-temperature creep in several respects. There is, in fact, a fair body of experimental evidence suggesting that the material response under hot-working conditions is similar to that occurring under creep conditions, in spite of the many orders of magnitude difference in strain rate.2"4 Since creep has been extensively analyzed in terms of dislocation mechanisms, the comparison of hot-working to creep is useful, for it can suggest the possible deformation mechanisms operating during hot-working. In this paper, the hot extrusion of aluminum will be examined from the point of view of thermally activated deformation mechanisms, such as operate during creep. EXPERIMENTAL PROCEDURE The experimental procedure consisted of extruding commercial purity aluminum* over a range of ram velocities and temperatures at constant die reduction by the direct method. Details of the experimental equipment have been published elsewhere.5 Extrusion was carried out at each of the following billet temperatures: 320°, 376°, 445°, 490°, 555°, and 616°C at the following constant ram speeds: 0.002, 0.008, 0.02, 0.1, and 0.2 in. per sec.* All results were obtained using a square-shouldered die with an extrusion ratio of 40:1, giving a reduction in area of 97.5 pct. The ram force was the dependent variable, and was measured by means of strain gages on the ram and was plotted as a function of ram travel. The sequence of events before making an extrusion was duplicated before each run so as to minimize as much as possible variations in experimental conditions. For example, after the equipment had been assembled, the billet was allowed to heat up to temperature inside the insulated container. Once the container attained the desired temperature, a period of 1/2 hr was allowed to elapse before the extrusion was made. This time was found to be required to allow the billet to reach a steady-state temperature, as determined from previous tests. When all was ready, extrusion was carried out without interruption; that is, the billet was upset and extruded in one operation. EXPERIMENTAL RESULTS AND DISCUSSION The two usual experimental approaches for investigating high-temperature deformation exhibit an important common feature. In the first approach, which corresponds to creep, a constant stress (or load) is applied to the material at constant temperature and the resultant strain is recorded against time. After an initial transient stage, a state of constant strain rate exists (secondary creep), in which a steady-state condition is established which is sensitive to variation in either applied stress or temperature. In the second approach, a constant strain rate is applied and the resultant flow stress is recorded. This corresponds to the situation in hot torsion or hot compression, where it is observed that, for a constant test temperature, there is an initial rise in stress to a steady value which is maintained up to very high strains. In tests of this type, a steady-state region is also established in which the stress is sensitive to variation in either the strain rate or the temperature.3,4,6-16 In both types of tests, therefore, a steady-state region is established after an initial transient. In the case of hot-working this region may be called steady-state hot-working, and it is analogous to steady-state creep with which it has many common features. Stress Dependence of the strain Rate in Extrusion. In order to assess the stress dependence of the strain rate under extrusion conditions, and to compare it to that of creep, as well as of hot torsion and hot compression, the extrusion data were analyzed according to power, exponential and hyperbolic sine creep equations.
Citation

APA: Winston A. Wong John J. Jonas  (1969)  Part XI – November 1968 - Papers - Aluminum Extrusion as a Thermally Activated Process

MLA: Winston A. Wong John J. Jonas Part XI – November 1968 - Papers - Aluminum Extrusion as a Thermally Activated Process. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1969.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account