Part XI – November 1969 - Papers - Basal Dislocation Density Measurements in Zinc

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 3
- File Size:
- 271 KB
- Publication Date:
- Jan 1, 1970
Abstract
Observations of dislocations in zinc using Berg-Barrett X-ray micrography confirm the validity of a dislocation etch for (1010) surfaces. A technique for measurement of the depth in which dislocations can be imaged in X-ray micrographs is given. This depth on (0001) surfaces of zinc was found to be 2.5 µ using a (1013) reflection and CoKa radiation. BUCHANAN and Reed-Hill (B & RH) have recently questioned the ability of a dislocation etch to reveal all of the basal dislocations which intersect (1010) surfaces in annealed zinc crystals.' This etch was developed by Brandt, Adams, and Vreeland who conducted a number of different experiments to check its ability to reveal dislocations.2,3 B & RH prepared (0001) foil specimens for transmission electron microscopy from annealed crystals and observed dislocation densities of about l08 cm per cu cm in the foils, while the etch indicated densities of the order of l04 cm per cu cm in their annealed crystals. As this etch has been used in a number of studies of dislocations in zinc, it is of considerable importance to reassess its validity in the light of the B & RH results. The X-ray work reported here was undertaken to check the ability of the etch to reveal dislocation intersections on (1070) surfaces of zinc. The X-ray technique was chosen for this check because it could be applied to the as-grown crystals with a relatively small amount of specimen preparation. We believe that the possibility of accidental deformation in preparation of the bulk specimens is considerably less than that for thin foil specimens suitable for transmission electron microscopy. Unfortunately, basal dislocations are not visible on Berg-Barrett topo-graphs of (1010) surfaces, which are the surfaces on which the etch is most effective. Therefore, a one-to-one correspondence between the etch and X-ray observations could not be made. Basal dislocations near (0001) surfaces have been observed by Schultz and Armstrong4 using the Berg-Barrett technique, but they did not report the as-grown dislocation density observed in their crystals. We have applied the X-ray technique in this study to surfaces oriented from 1 to 2 deg of the (0001) to determine the basal dislocation density, and have compared this density with that observed using the etch on a (1070) plane of the same crystal. The X-ray observations permit determination of the depth in which basal dislocations can be observed under the diffracting conditions used. SPECIMEN PREPARATION High purity zinc crystals are very soft, so a good deal of care must be exercised in the preparation of observation surfaces. As-grown crystals approximately 2.5 cm in diam and 20 cm long were acid cut into 1.25 cm cubes. A thin slab was cleaved from an (0001) surface to produce an accurately oriented reference surface on the specimen. Some of the cubes were examined in the as-machined condition while some were annealed in argon at 410°C for 2 hr. Heating and cooling rates were less than 2°C per min. Some of the specimens were scratched on a (0001) surface with a razor blade to produce fresh dislocations. Approximately 2 mm of material was acid lapped from one face of a cube to produce a surface oriented between 1 and 2 deg from the basal plane and parallel to the [1210] direction. A (1070) surface was also acid lapped. The lap used a 1 to 3 pct solution of HN03 in water to saturate a soft cloth which was backed by a stainless steel plate. The cloth was moved over the crystal surface at a rate of 20 cm per sec while a normal force of about 4 g was maintained between the cloth and the specimen. As-lapped surfaces were examined as were surfaces which were chemically and electrolytically polished after lapping. The small angle between a lapped surface and the (0001) plane was measured to 0.1 deg using a Unitron microgoniometer microscope (the cleaved surface was used as a reference in this measurement). The microscope was modified so that the intensity of reflected light could be continuously monitored on a meter. This modification produced nearly a ten-fold increase in the reproduceability of orientation readings. OBSERVATIONS The Unitron Microgoniometer observations indicated that the lapped surfaces had a terraced structure with the terraces quite rounded and spaced about 0.1 mm in the [1010] direction. The maximum change in slope between terraces was 0.25 deg, indicating a terrace height of about 0.1 µ. A Unitron measurement of the average angle between (0001) and a lapped surface was checked by micrometer measurement of the specimen and found to agree within 0.1 deg. The Berg-Barrett micrographs using (1013) reflections and CoKa radiation5 revealed subboundaries, short dislocation segments, spirals, and loops near the surfaces which were oriented from 1 to 2 deg of the (0001). Micrographs of surfaces prepared by lapping appeared very similar to those of the chemically and electrolytically polished surfaces. The loops and spirals were not extinct in (1013) or (0002) reflections, indicating that they have a nonbasal Burgers vector. Extinctions of the short, straight dislocations indicated that they belonged to an (0001)(1210) system. Fig. 1 is an example of a micrograph which shows a subboundary, and dislocation segments which are pre-
Citation
APA:
(1970) Part XI – November 1969 - Papers - Basal Dislocation Density Measurements in ZincMLA: Part XI – November 1969 - Papers - Basal Dislocation Density Measurements in Zinc. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1970.