Part XI – November 1969 - Papers - Diffusional Flow in a Hydrided Mg-0.5 Wt pct Zr Alloy

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 4
- File Size:
- 376 KB
- Publication Date:
- Jan 1, 1970
Abstract
Specimens of a hydrided Mg-0.5 Zr alloy were strained in tension at 500°C and constant rates of 2 x10-3 5 x 10-3, and 2 X 10" min-1. Hydride-denuded zones formed at grain boundaries normal to the tensile-stress direction as a result of magnesium transport during difusional flow. The width of the zones could be measured and the measurement used for calculating the diffusional component of the imposed tensile strain. The strain from diffusional flow was found to increase with imposed strain at a diminishing rate, tending to saturate at approximately 12 pct. Strain rate sensitivity of flow stress was low. The apparent non Newtonian character of the diffusional flow is attributed to a non Newtonian process acting in parallel with it which could be boundary shear. Fracture grows out of voids that form in the denuded zones. DEFORMATION of a grain by diffusion of atoms from boundaries stressed in compression to boundaries stressed in tension is Newtonian viscous,1-3 and evidence has accumulated in recent years that such a process may be responsible for the high strain-rate sensitivity of the flow stress of super-plastic alloys.4"7 One piece of evidence is that experimental stress: strain-rate relationships can be quantitatively explained.5-7 There is also metallo-graphic evidence of diffusional flow in superplas-ticity, but in a limited amount. The formation of striated bands on the surface of superplastically deformed specimens has been attributed to diffusional flow.5"7 The basis of that attribution came from experiments on a coarse-grained, nonsuperplastic and hydrided Mg-½ wt pct Zr alloy which formed hydride-denuded, light etching zones at tension-stressed boundaries when strained in tension at 270?C.6 The origin of these zones had already been traced to the diffusional flow of magnesium atoms to the boundaries.' The particular observations in the more recent work were of striated-band formation on the surface and denuded-zone formation internally, with both the bands and zones having the same width and appearing at tension-stressed boundaries. It was argued that the bands were a surface manifestation of the zones and hence of diffusional flow. Of course in superplastic alloys which do not contain internal metallographic "markers", the surface bands can be the only metallographic indication. In the present work, denuded-zone formation was utilized, as it has been by others,9-11 to extend the observations of diffusional flow and to measure the strain, ed, resulting from it. Grain size had to be large to measure ed with accuracy. The grain size chosen for this study was -30 , and with that a strain of 10 pct from diffusional flow produces a denuded zone only 3 µ in width. The large grain size naturally precludes superplasticity. The observations of diffusional flow were complemented by determining the strain from the other operative deformation modes: slip, e,, and grain boundary shear, egb. An incremental specimen extension is the sum of increments from slip, and grain boundary shear as well as diffusional flow. Division by a common length is required to convert to strain. If this length is taken as the initial specimen length, then imposed engineering strain, e, is given in terms of the component engineering strains by e = ed + es + egb [1] Stress:strain-rate relationships are determined by the way in which this "strain balance" is made up. EXPERIMENTAL Material. Zirconium hydride markers were introduced into the Mg-0.5Zr alloy by annealing in hydrogen at 450°C for 30 min. The hydride concentration was particularly high at zirconium rich stringers, which was fortunate in that the transverse boundaries at which denuded zones form lie perpendicular to the stringers. Grain size after annealing was 30 µ. Photomicrographs of unstrained and strained material are shown in Fig. 1. Procedure. Specimens were strained in tension with an Instron machine at crosshead velocities of either 2 x 10"3, 5 x X or 1 x 10-2 in. min-'. Specimen length and diameter were 1.0 and 0.2 in., respectively, so that initial strain rates in tests at constant crosshead speed were 2 x 10"3, 5 x X and 1 X l0-2 min-1. Tests were made at 500°C which is a compromise temperature at which diffusional flow is still measurable but grain growth is not active enough to interfere with metallographic measurements. The tests were made in a hydrogen atmosphere. Strain Balance. An equation additional to [I] is eg = ed + es [2] where eg is strain measured from grain elongation. Measurement was made of ed, eg, and, of course, e, which enabled all the strains in Eq. [I] to be determined. For this purpose, strained specimens were sectioned longitudinally, polished, and etched. The strain from diffusional flow, ed, was computed by measuring on photomicrographs the width in the tensile direction of denuded zones at either end of a grain XI, X2, adding them, and dividing by twice the initial longitudinal grain dimension L0, Fig. 2. Reported values are the results of measurements on seventy randomly selected grains; 95 pct confidence limits on ed were +1.5 pct strain. To measure eg, the maximum length, L, and the maximum width, W,
Citation
APA:
(1970) Part XI – November 1969 - Papers - Diffusional Flow in a Hydrided Mg-0.5 Wt pct Zr AlloyMLA: Part XI – November 1969 - Papers - Diffusional Flow in a Hydrided Mg-0.5 Wt pct Zr Alloy. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1970.