Part XI – November 1969 - Papers - Gas-Liquid Momentum Transfer in a Copper Converter

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 9
- File Size:
- 515 KB
- Publication Date:
- Jan 1, 1970
Abstract
In a copper converter air enters the bath in the form of turbulent jets. The interaction of these jets with the molten matte is fundamental to the converting process. In the present study, an equation is derived to describe the trajectory of a gas jet in a liquid. Calculated and experimental results for air jets injected into water are in good agreement. The trajectories of air jets in copper matte are predicted. THE air injected through the tuyeres of a Peirce-Smith copper converter emerges into the bath of molten matte in the form of a highly turbulent jet. The air jets affect a number of chemical and physical processes occurring in the converter: i) Converting Rate. It is generally recognized that the production capacity of a converter is limited by the flow of air which can be injected through the tuyeres and by the oxygen efficiency. In turn, the air flow is limited by pressure drop considerations or by the amount of splashing within the converter. ii) Oxygen Efficiency. This depends on the dispersion of the air jet in the liquid bath, and its trajectory through the bath. iii) Mixing. The jets act as mixing devices by transferring momentum energy to the bath; in this way the heat generated by the converting reactions occurring in the jets is distributed through the bath. iv) Refractory Wear. The proximity of the jets, which are centers of heat generation, to the refractories in the tuyere zone may have an important effect on refractory life. Mixing conditions in the bath will also influence refractory erosion. v) Splashing, and Accretion Build-Up. The energy of the jets is not dissipated entirely in mixing the bath. particles of liquid are carried out kith the gas above the surface of the bath in the form of liquid spouts and droplets. These result in the undesirable build-up of accretions on the converter mouth, and dust losses in the flue gas. Despite the importance of the interaction of the air jets and the matte in a converter, very few studies of the fluid dynamics of converting have been reported in the literature. Metallurgists in the USSR appear to have been more concerned with the subject than their Western counterparts. Deev et al.1 studied the interaction of an air jet with aqueous solutions in a converter model and qualitatively determined the tuyere air velocity and tuyere inclination which produced the most favorable results with respect to good mixing in the bath, and minimum splashing. Shalygin and Meyer-ovich2 also examined the air-matte physical interaction both in models and in industrial converters; they concluded that in conventional converting practice, there was no significant penetration of the air jets into the matte layer, and consequently the converting reactions occurred mainly in a zone adjacent to the tuyeres. The behavior of air jets in a converter bath, and the aerodynamic characteristics of tuyeres are discussed at length in a monograph on converting by Shalygin.3 However, the description of the phenomena occurring in the converter bath is largely qualitative. The side-blown Bessemer converter for steelmak-ing is very similar to the Peirce-Smith copper converter. Among the few investigations of the behavior of air jets in the bath of a Bessemer converter are those of Kootz and Gille4 who studied splashing in the course of an investigation on the effect of blowing conditions and converter shape on nitrogen pick-up in Bessemer steel. They found that during blowing standing waves were formed on the surface of the bath; the amplitude of the waves increased with the depth and angle of tuyere immersion until the whole bath moved backwards and forwards causing heavy splashing. Kazanstev5 used a model of a Bessemer converter to obtain correlations between the axial velocity of a gas jet and distance from the tuyere orifice and the Froude number of the jet. shalygin3 used these results to calculate the horizontal penetration of an air jet in a copper converter; the penetration was defined as the distance in which the axial jet velocity decreased to 10 pct of its initial value. However, the rising trajectory of the jet was not taken into account. In the absence of quantitative information on the fluid dynamics of converting, the design of copper converters has been based mainly on operating experience. Such experience tends to vary widely from smelter to smelter., This is reflected in Table I which is based on data compiled by Lathe and Hodnett.6 Aside from a rough, and perhaps obvious correlation between the total air flow and converter volume, Fig. 1, no pattern emerges from the data. For example, tuyere throat air velocities vary from 215 to 465 ft per sec in converters of the same size, for little apparent reason. The air jet energy input per cubic foot of converter volume, which may be taken as a measure of the amount of mixing in the converter bath, also varies greatly. A recent analysis of converter data by Milliken and Hofinger7 has also revealed unexplained variations in operating parameters. It is believed that by gaining a better understanding of the fluid dynamics of converting a more rational basis may be provided for the design of converters. In particular, it is proposed that if one takes into account the desirable criteria of a high converting rate, high oxygen efficiency and long refractory life, there should be an optimum configuration of tuyere air flow for a converter of a given diameter. The present investigation is concerned with the form and trajectory of an air jet in a converter bath. The general theory of turbulent jets has been expounded by Schlichting8 and Abramovich.9 However, most experi-
Citation
APA:
(1970) Part XI – November 1969 - Papers - Gas-Liquid Momentum Transfer in a Copper ConverterMLA: Part XI – November 1969 - Papers - Gas-Liquid Momentum Transfer in a Copper Converter. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1970.