Part XI – November 1969 - Papers - High-Temperature Creep of Some Dilute Copper Silicon Alloys

The American Institute of Mining, Metallurgical, and Petroleum Engineers
N. N. Singh Deo C. R. Barrett
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
7
File Size:
564 KB
Publication Date:
Jan 1, 1970

Abstract

The high-temperature steady-state creep behavior of a series of dilute copper-silicon alloys was studied to determine the effect of stacking fault energy on the creep-rate. The steady-state creep rate is, when taken at equivalent diffusivities decreases with decreasing stacking fault energy. The stress and temperature dependencies of is suggest that creep is a difusion controlled dislocation climb process. Electron microscopy studies of the creep substructure revealed: 1) the subgrain size is not a function of the stacking fault energy in these alloys, 2) the dislocation density not attributed to the subgrain walls seems to be higher during primary creep and decreases to a lower steady value during steady-state creep, and 3) the dislocation density during steady-state creep decreases with decreasing stacking fault energy. In the past few years numerous investigators have studied the influence of stacking fault energy on high-temperature creep strength. Most of these investigators have confined their attentions to studying the relationship between steady-state creep rate, is, and stacking fault energy, ?, when samples are tested under conditions of comparable stress and temperature. For the case of fcc metals, it was initially shown by Barrett and Sherbyl and since confirmed by many others2"4 that is decreases with decreasing ?, often following an empirical relation of the form i ?m where m is a constant about equal to 3. The application of theory to explain this observation has not been entirely successful. One of the main difficulties has been the almost complete lack of structural information (dislocation density, subgrain size, and so forth) for samples with different stacking fault energies, tested under high-temperature creep conditions. weertman5 has attempted to explain the stacking fault energy dependence of is on the basis of a dislocation climb mechanism. Assuming that both the rate of dislocation core diffusion and the ease of athermal jog formation decreases as ? decreases Weertman has argued that the rate of dislocation climb and hence the creep rate should also decrease as ? decreases. One questionable aspect of Weertman's analysis is the assumption that core diffusion down extended dislocations is slower than core diffusion down unextended dislocations. The only experimental work done in this area, by Birnbaum et al.6 on nickel and Ni-60 Co, has shown the core diffusivity to increase with decreasing ?. Theories of steady-state creep based on the diffusive motion of jogged screw dislocations often seem unable to predict even the qualitative nature of the es- relationship. Assuming that Weertman is correct in his assumption that the dislocation jog density decreases with decreasing ? then the jogged screw theories predict an increasing dislocation velocity with lower ?. It is usually assumed that the increase in dislocation velocity implies a corresponding increase in creep rate. However, two other factors must be considered before such a statement can be made. That is, we must know how both the mobile dislocation density and the effective stress (the difference between applied stress and internal stress) vary with ?. Significant changes in either one of these factors could outweigh any change in dislocation velocity accompanying a change in ?. And with the slower rates of recovery expected in low stacking fault energy materials it seems likely to expect both mobile dislocation density and effective stress to be dependent on ?. Sherby and Burke7 have suggested that stacking fault energy influences the creep rate in an indirect way. These authors cite evidence that the steady-state subgrain size generated during high-temperature creep is a function of ? decreasing with decreasing ?. Assuming the creep rate to be proportional to the area swept out by each expanding dislocation loop and that subgrain boundaries are good barriers to dislocations, then the creep rate should be proportional to subgrain area, hence increasing as ? increases. A critical evaluation of any of the above theories requires more quantitative information concerning the dislocation substructure generated during high-temperature creep. Accordingly this investigation was undertaken with an aim of studying the influence of stacking fault energy on tbe steady-state creep characteristics of a series of dilute copper-silicon alloys. Special emphasis was placed on studying the strain dependence of both the dislocation configuration and density. MATERIALS AND PROCEDURE Dilute copper-silicon alloys of the compositions shown in Table I were tested in tension at constant stress. The relative stacking fault energy of these alloys has been determined and is shown in Table 11. An Andrade-Chalmers lever arm was used to maintain constant stress and testing was carried out in a water
Citation

APA: N. N. Singh Deo C. R. Barrett  (1970)  Part XI – November 1969 - Papers - High-Temperature Creep of Some Dilute Copper Silicon Alloys

MLA: N. N. Singh Deo C. R. Barrett Part XI – November 1969 - Papers - High-Temperature Creep of Some Dilute Copper Silicon Alloys. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1970.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account