Part XI – November 1969 - Papers - The Critical Supersaturation Concept Applied to the Nucleation of Silver on Sodium Chloride

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 10
- File Size:
- 778 KB
- Publication Date:
- Jan 1, 1970
Abstract
The concept of a critical super saturation, below which the nucleation rate is essentially zero and above which it is essentially infinite, is discussed with reference to vapor-solid nucleation. The necessary and sufficient conditions deduced for observations of this type of behavior are: 1) the nucleation rate must exhibit a sharp dependence on super saturation, 2) the growth rate must be sufficiently large that nuclei become observable in the time period of the experiment, and 3) the number of highly preferred nucleation sites must be small. Experiments reveal that the nucleation of silver on sodium chloride is visually detectable at all experimentally accessible super saturations and does not exhibit critical nucleation behavior. Failure to observe a critical super saturation is attributed to the insensitivity of nucleation rate to supersaturation as a consequence of the particular values of the contact angle and the surface free energy for this system. THE concept of a critical supersaturation, below which the nucleation rate is essentially zero and above which it is essentially infinite, arises naturally in homogeneous nucleation theory. Experimentally this type of behavior has been found by Volmer1 and others for water and other low surface tension liquids, as reviewed by several authors.2'3 The same type of behavior has been predicted and observed for heterogeneous nucleation of solids by Yang et al.4 and others,596 as also recently reviewed.2,7,8 In the work reported here on the heterogeneous nucleation of silver on NaC1, however, no critical super-saturation was found. Similar observations have been made recently for other systems.9-11 These results led to a reexamination of nucleation theory which revealed that there are conditions for which critical behavior is not predicted, either for homogeneous or heterogeneous nucleation. Although heterogeneous nucleation is of primary importance in this paper, some insight into critical behavior for such a case can be gained by considering homogeneous nucleation. Accordingly both types of nucleation theory are reviewed briefly. The requisite conditions for critical supersaturation behavior are then considered. The experimental results for the nucleation of silver on NaCl are presented and interpreted in terms of the theoretical presentation. REVIEW OF NUCLEATION THEORY There are essentially two approaches to nucleation theory, the so-called classical theory involving the concepts of bulk thermodynamics, and the statistical mechanical theory in which nuclei are regarded as macromolecules. The classical theory is based on the work of Volmer and Weber12,13 and Becker and. Doring14 and has been extended by Pound et al.15 The crucial assumption in the classical theory is that the small clusters or nuclei can be characterized by the same thermodynamic properties as those of the stable bulk phase. Thus, the nuclei are assumed to have a surface free energy, y, and a volume free energy of formation (relative to the vapor phase), ,, identical to that of the bulk. For deposition under low super-saturation conditions, the nuclei are large and this assumption is satisfactory. However, in many cases of interest, the nuclei contain only a few atoms and this assumption is highly questionable. The statistical mechanical models originated, for the specific case of a dimer as the critical nucleus, with the work of Frenkel16 and were extended later to larger sizes by Walton,17,18 Hirth19 and, more recently, Ht Zinsmeister. These models describe the nucleus in terms of a partition function, the estimation of which is tractable for clusters of 2 to 10 atoms, but extremely difficult for clusters larger than 10 atoms. Although the classical and statistical mechanical models are expected to apply for the limiting cases of large and small nuclei, both are uncertain for intermediate sizes. In this paper we shall treat only the classical model, recognizing that it is exact only for large nucleus sizes and regarding it as a phenom-enological description for small nucleus sizes. When analyses of experimental data using bulk properties show the nucleus size to be small, the resulting parameters should be regarded as largely empirical parameters describing the relative nucleation potency of the system. Considerable justification for the continued use of classical theory is provided by its general success in predicting nucleation behavior as a function of supersaturation and temperature. We emphasize that the qualitative features of the statistical mechanical models, particularly the critical super-saturation behavior that is central to the present work, are the same as those of the classical model. Of course, potential energy terms and surface partition functions replace the volume and surface energy terms of the latter model. The most recent versions of classical nucleation theory have been extensively reviewed.2,3,7 so that only the results are presented here. For homogeneous nucleation of a condensed phase from the vapor phase, the volume free energy change is ?Gv=vrT = =^ln£ [1] where v is the molecular volume of the condensing species. The supersaturation ratio,
Citation
APA:
(1970) Part XI – November 1969 - Papers - The Critical Supersaturation Concept Applied to the Nucleation of Silver on Sodium ChlorideMLA: Part XI – November 1969 - Papers - The Critical Supersaturation Concept Applied to the Nucleation of Silver on Sodium Chloride. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1970.