Part XI – November 1969 - Papers - The Effect of Hydrostatic Pressure on the Martensitic Reversal of an Iron-Nickel-Carbon Alloy

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 5
- File Size:
- 372 KB
- Publication Date:
- Jan 1, 1970
Abstract
The effect of hydrostatic pressure upon the austenite start temperature of a commercial Fe-28.4 at. pct Ni-0.5 at. pct C alloy has been determined. For pressures to 20 kbar, the austenite start temperature decreased from its atmospheric pressure value of 380°C at the rate of about 4°C per kbar. These data are analyzed by two different thermodynamic approaches; first, considering the transformation as an isothermal process, and second, considering the transformation as an isentropic process. It was found that both these approaches fit the experimental data equally well. The effect of hydrostatic pressure upon the austenite start temperature is best described by considering the mechanical work done during the transformation as that work obtained by multiplying the applied pressure with the gross volume change of the transformation. It is widely recognized1 that strain has an important effect on the initiation of martensitic transformations.* For example, the martensite start tempera- *In this paper, use of the term martensitic transformation implies the reversal of martensite to austenite as wen as the formation of martensite from austenite. ture, M,, may be increased by plastic deformation. Similarly, plastic deformation is observed to lower the austenite start temperature, A,. The effect of uniaxial stress on the M, of iron-nickel alloys has been studied by Kulin, Cohen, and Averbach.2 They found that the martensite start temperature was significantly changed by stresses well within the elastic region. Moreover, the effect of tensile and compres-sive stresses differed. These effects were explained in terms of the interaction of the applied stress with both the dilational and shear components of the transformation strain. The magnitudes of the influence of uniaxial tension, compression and hydrostatic pressure on Ms were measured in 30 pct Ni 70 pct Fe by Pate1 and Cohen.3 Their thermodynamic calculations and similar calculations by Fisher and Turnbull4 predicted the experimental results when the transformation was assumed to occur isothermally at some fixed driving force. This driving force was assumed to be supplied by a combination of the chemical free energy difference between the austenitic and martensitic phases and the work performed during transformation by the applied stress. More recently, Russell and winchel15 reported the effect of rapidly applied shear stress on the reversal of martensite to austenite in iron-nickel-carbon alloys. They performed a thermodynamic analysis of this transformation based upon the assumption that the re- versal occurred adiabatically. They concluded that the applied shear stress did not significantly interact with the transformation strain and thus did not assist in inducing the reversal. Rather they concluded that the reversal was effected by localized strain heating which resulted from the gross local shear deformation of the experiment. In either the adiabatic or isothermal analysis it is necessary to compute the work performed by the interaction of the applied stress and the transformation strains. In the case of hydrostatic pressure this interaction has been treated by two different methods. In either case the applied pressure is assumed to remain constant during the transformation. In one treatment the applied pressure is assumed to interact directly with the dilatational strain associated with the formation of an individual martensite plate.3'4 This local strain has been measured at atmospheric pressure in iron-nickel alloys by Machlin and Cohen.6 In the above treatment this local strain is assumed invariant with temperature and pressure changes. In the other treatment the applied pressure is assumed to interact with the gross volume change of the transformation.7,8 The usefulness of this latter treatment has been demonstrated by Kaufman, Leyenaar, and Harvey7 who calculated the effects of pressure upon the martensite and austenite start temperatures of Fe-10 at. pct Ni and Fe-25 at. pct Ni alloys. Excellent agreement was obtained between their calculations and their experimental data on an Fe-9.5 at. pct Ni alloy. However, this treatment suffers from the fact that the data required to calculate the volume change of the transformation (i.e., the initial specific volumes, the thermal expansion and compressibility data for both the austenitic and martensitic phases) is, in general, not available for any material except pure iron. Thus the calculations of Kaufman et al.7 were necessarily performed by assuming that the volume change of the martensitic transformation in the iron-nickel alloys was that same volume change occurring during the a-? transformation in pure iron. While this approximation may suffice for very dilute alloys it is likely to be inaccurate in high nickel alloys. We have performed measurements of the effect of hydrostatic pressure to 20 kbar on the A, temperature of an Fe-28.4 at. pct Ni-0.5 at. pct C alloy. The composition is similar to the alloy used by Pate1 and Cohen3 to determine the effect of pressure upon the M, temperature. The present measurements permit calculation of the interaction between the applied pressure and the transformation strain. Additionally, measurements have been made which allow precise determination of the gross volume change of the transformation. The data allow direct comparison between the alternate hypotheses of the interaction between the applied pressure and a dilatational transformation strain characterized by either the formation
Citation
APA:
(1970) Part XI – November 1969 - Papers - The Effect of Hydrostatic Pressure on the Martensitic Reversal of an Iron-Nickel-Carbon AlloyMLA: Part XI – November 1969 - Papers - The Effect of Hydrostatic Pressure on the Martensitic Reversal of an Iron-Nickel-Carbon Alloy. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1970.