Part XI – November 1969 - Papers - The "Lamellar to Fibrous Transition" and Orientation Relationships in the Sn-Zn and AI-Al3 Ni Eutectic Systems

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 6
- File Size:
- 465 KB
- Publication Date:
- Jan 1, 1970
Abstract
The morpho1ogies and orientation relationships of the phases in the Sn-Zn and A1-A13Ni eutectic systems were examined by electron microscopy and X-ray diffraction techniques. In each alloy the "transition" from the lamellar to the fibrous morphology was found to be one of scale, not of type. The minor phase in both systems exhibited certain well developed facets which were not affected by changes in the ingot solidification rate. The crystallographic relationships displayed by the pairs of phases in both systems were also insensitive to the growth rate. In the Sn-Zn alloy, the unique relationship of: growth direction - II [1201 Sn - II [01101 Zn and ribbon interface plane 11 (101) Sn 11 (7012) Zn was determined. The Al-Al3Ni alloy phases did not possess any particular orientation relationship, though the Al3Ni phase invariably grew in the [010] direction and exhibited the same set of facet planes. These results are discussed in relation to current eutectic growth theories and explanations of the "lamellar to fibrous transition". THE lamellar to fibrous transition that occurs in many eutectic alloys has been the subject of considerable speculation and experimental study. In some alloys it can be induced solely by an increase in the solidification rate,'-3 whereas in others the transition supposedly occurs only if the lamellae are forced to grow out of the overall ingot growth direction.4-6 he cause of this latter type of transition has been attributed to deviations of the lamellae from their low energy habit planes;4'5'7 fibers are produced because the sustaining force for lamellar growth (a low energy boundary) is destroyed. Implicit in these explanations is the assumption that fibers are circular in cross-section and completely lacking in low energy inter-phase interfaces. The "natural" growth rate dependent transition has been studied less thoroughly although Tiller8 has attempted a theoretical explanation of it. Tiller's arguments are not completely satisfactory9 but his suggestion that the relative undercoolings of the solid/liquid interface for lamellar and fibrous morphologies are growth rate dependent cannot be totally discounted; it is possible, for instance, that the relative interfacial undercoolings could alter and produce the observed morphology change if the orientation relationships between the phases and the associated interphase bound- ary energies were sensitive to growth rate. Salkind et al." have reported finding a change in the orientation relationships in the A1-A13Ni system accompanying the lamellar to fibrous transition, but contradictory evidence has also been reported for this3'" and another system,12 so the position remains unclear. In an attempt to clarify matters a study was made of the "lamellar to fibrous" transition in the Sn-Zn and A1-A13Ni eutectic systems; the morphologies of these two selected systems are quite similar when viewed by optical microscopy. In the present research the morphologies and morphology changes were investigated by electron microscopy. The orientation relationships existing between the eutectic phases were also determined for both morphologies in both eutectic systems. EXPERIMENTAL PROCEDURE The materials and method of alloy preparation and ingot solidification for the Sn-Zn system have been reported previously.2 In this investigation nine horizontally grown ingots of the highest purity (99.9997 pct) were used. The temperature gradient in the melt was not intentionally varied and was approximately 10°C per cm. Seven growth rates between 1.3 cm per hr and 20 cm per hr were imposed. The A1-A13Ni alloys were prepared from "Spec. Pure" nickel and 99.995 pct aluminum by melting the components in an open alumina crucible and casting the melt into the cold graphite mold. Six ingots of the Al-Al3Ni alloy were unidirectionally solidified at growth rates from 1 cm per hr to 12 cm per hr under high purity argon. A typical ingot was 20 cm long, 1 cm wide, and 0.75 cm to 1.5 cm thick. Samples taken from the bars at positions 12 cm from the nucleation end were examined by conventional orthogonal-section metallo-graphic techniques. When required, samples were mounted for X-ray diffraction analysis using the Laue back-reflection technique with a finely focussed X-ray source. The surfaces of the A1-A13Ni specimens were prepared by mechanically polishing them down to the 1 µ diamond pad stage followed by an electropolish in 80/20 methanol/perchloric acid solution at 0°C and 20 to 30 v. The Sn-Zn specimens were repeatedly polished on an alumina pad and etched in hot dilute (2 pct) nitric acid until the diffraction spots were found to be sharp. Thin films of the alloys were prepared for observation in an electron microscope by spark machining thin discs (0.03 to 0.04 in. thick) from longitudinal and lateral sections of the bars and elec-trolytically thinning them via a jet polishing technique. For the A1-A13Ni eutectic alloy, an 80/20 mixture of ethanol/perchloric acid at 40 v and 20°C was found to be satisfactory. A solution of 70/20/10 methanol/perchloric acid/butylcellosolve at 25 v and 20°C was used on the Sn-Zn alloy. For the former alloy the jet nozzles (cathodes) and the disc clamps were of aluminum;
Citation
APA:
(1970) Part XI – November 1969 - Papers - The "Lamellar to Fibrous Transition" and Orientation Relationships in the Sn-Zn and AI-Al3 Ni Eutectic SystemsMLA: Part XI – November 1969 - Papers - The "Lamellar to Fibrous Transition" and Orientation Relationships in the Sn-Zn and AI-Al3 Ni Eutectic Systems. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1970.