Part XI - Papers - The Kinetics of Sessile-Drop Spreading in Reacting Meta I-Metal Systems

The American Institute of Mining, Metallurgical, and Petroleum Engineers
M. Nicholas D. M. Poole
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
6
File Size:
1769 KB
Publication Date:
Jan 1, 1967

Abstract

The diameters of sessile drops have been found to increase linearly with time in five reacting binary metal systems. The spreading rates of the drops are markedly dependent on temperature and on prior alloying of the solid with the lower melting point metal, hut are independent of the drop volume, wetting atruosphere , solid-surface roughness, and prior alloying of the drop with the substrate metal. A mechanism has been suggested that relates the linear-spreading rate to lateral diffusion of the liquid-metal atoms into the solid at the drop edge. An Arrhenius- type equation has been derived that describes the temperature dependence 0) the spreading rate, and although the agreement between the actual and the predicted pre-exponen-tial terms is poor that between the activation energies is excellent and the variation in the spreading rate of copper on Ni-Cu alloys produced by different extents of alloying can be predicted with considerable accuracy. CHEMICAL interactions frequently change the wetting behavior of solid-liquid systems causing, for example, "secondary spreading1 of sessile drops beyond the size defined by the surface and interfacial tensions of the unreacted components. The kinetics of the contact-angle decreases associated with this spreading are similar for many systems, but few studies have been made with the objective of determining whether the similarities are a reflection of a common mechanism. Some workers2,3 have assumed the secondary spreading is controlled by changes in the liquid surface and liquid-solid interfacial tensions and hence by the composition of the liquid, and contact-angle changes measured by the vertical-plate technique have been used to follow the course of liquid-solid chemical reactions.4 Other processes that have been invoked to explain these time-dependent changes in specific systems include the removal of adsorbed gas from the liquid-solid interface.5 penetration of containment layers on the solid Surface,6 interdiffusion,1,7 reori-entation of the solid surface into a wettable configuration: vapor-phase transport of the liquid onto the solid in advance of the drop,9 and, from vertical-plate studies. capillary flow between oxide layers and the solid surface.10 One of the reasons for the profuseness of these suggestions may be the complexity of the contact-angle change kinetics. However, in an analysis of secondary spreading gold and copper on UC,11 it was found that the diameter of the contact area between the sessile drop and the solid surface showed a simple linear increase with time although contact-angle changes were more complex. To check whether the linearity was merely fortuitous! additional exploratory work was conducted with four reacting metal-metal systems: Au on Ni. Cu on Ni, Cu on Fe, and Ag on Au. Linear spreading was observed in every case even though the kinetics of the contact-angle changes were complex. A further detailed study of the kinetics of linear spreading of five reacting metal-metal systems has been made with the object of determining the mechanism involved. The influence of variables such as temperature, drop volume. and the initial composition of the drop on the linear-spreading rate has been measured and compared with those predicted by a number of possible mechanisms. The systems employed in this study (Cu and Au on Ni and Pt, and Ag on Au) were selected because of the availability of potentially relevant chemical and physical property data. the simplicity of their phase diagrams at the wetting temperatures, and the ease of experimentation. EXPERIMENTAL TECHNIQUES The purities of the metals used in the study were: copper, 99.9 pct; gold. 99.96 pct; nickel, 99.2 pct; platinum 99.99 pct; and silver, 99.999 pct. The wetting tests were performed in a split tantalum tube vacuum resistance furnace of a conventional design. The furnace element was held vertically and was 1 $ in. in diam and 6 in, long. Viewing ports were provided in the water-cooled chamber to enable the specimens to be observed in both the horizontal and vertical planes. The temperature in the hot zone of the furnace could be held at 1500" i 5°C for an indefinite time. The surfaces of the solid-plaque metals were ground flat on Microcut paper and both the sessile drop and substrate metals were ultrasonically cleaned in methyl alcohol prior to their insertion in the furnace. After loading, the furnace was pumped down to a pressure of 2 x 10-5 mm of mercury and degassed for 30 min at 900° to 950°C. The temperature was then increased at more than 100°C per min to that used in the wetting test. The vacuum at the wetting temperature was better than 5 x 10-5 mm of mercury. Dewetting and retraction of the drop on cooling did not occur and the contact-area diameters, therefore, were measured after solidification with a vernier traveling microscope. The diameters quoted later are arithmetic means of ten measurements. The standard error of the mean never exceeded 3 pct and was often less than 1 pct.
Citation

APA: M. Nicholas D. M. Poole  (1967)  Part XI - Papers - The Kinetics of Sessile-Drop Spreading in Reacting Meta I-Metal Systems

MLA: M. Nicholas D. M. Poole Part XI - Papers - The Kinetics of Sessile-Drop Spreading in Reacting Meta I-Metal Systems. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1967.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account