Part XII – December 1968 – Papers - Reduction Kinetics of Hematite to Magnetite in Hydrogen-Water Vapor Mixtures

The American Institute of Mining, Metallurgical, and Petroleum Engineers
G. Nabi W-K. Lu
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
7
File Size:
455 KB
Publication Date:
Jan 1, 1969

Abstract

Cylindrical specimens of natural dense hematite were reduced to magnetite at atmospheric pressure in H2-H2O mixtures of known composition over the temperature range 1084° to 1284°K. The rate of reduction was measured by the rate of movement of the interface between hematite and magnetite. The diffusion of gases through the gaseous boundary layer, the magnetite layer, and the interfacial chemical reaction were all considered in the interpretation of experimental data. The mass transfer coefficient through the boundary layer was calculated using accepted correlations. Values of the chemical reaction rate constant and the diffusivity of hydrogen in the magnetite phase were determined. THE present investigation is concerned with the reduction kinetics of natural hematite to magnetite by H2-H2O mixtures in the temperature range 1084" to 1284°K at atmospheric pressure. This reaction is the first step in the series of topochemical reactions in the process of reducing hematite to iron. Kinetic information of the simple steps such as hematite-magnetite transformation is necessary in order to have a better understanding of the complex processes of hematite reduction in iron-making. It also has direct industrial significance because magnetic roasting is one of the most important methods in benefication of lean ore.&apos; Although many technical papers have been published on the process of magnetic roasting and iron oxide reduction, very little information is available in the literature concerning the fundamental nature of hematite reduction to magnetite by reducing gases. Hansen et al.2 reduced the dense synthetic pellets of high-purity oxide in CO-CO2 mixtures and determined the reaction rate by weight-loss method. They were able to interpret most of their results by applying the interfacial area control theory developed by Mckewan.3 In contrast, Wilhelm and St. Pierre,4 who studied reduction of hematite to magnetite in H2-H2O mixtures by weight-loss method, stressed that the resistance of the porous magnetite layer to the diffusion of gases cannot be neglected in consideration of the overall reaction rate. In the present study the contributions of interfacial chemical reaction, diffusion of gases through the magnetite phase, and the gaseous boundary layer to the overall reaction rate will be considered. APPARATUS AND PROCEDURE Hematite Specimens Preparation. Natural hematite ore from Vermillon range of Northern Minnesota was selected for the present investigation because of its high purity and thermal stability. Chemical analysis of five samples gave the following average values: 67.52 pct total iron (96.62 pct Fe2O3, 0.28 pct FeO, 0.03 pct metallic iron), 2.53 pct SiO2, <0.07 pct MgO, 0.03 pct CaO, 0.05 pct combined mixture, 0.07 pct loss on ignition, and 0.34 pct other. Cylindrical specimens of 0.93 cm in diam and 2.7 cm in length were drilled from slabs of ore with a water-cooled diamond core drill. These specimens were heated to 1000°C and furnace-cooled. Specimens with silica pockets developed large cracks. The uncracked specimens were heated a second time, and their surfaces were carefully examined with a microscope. Those with hairline cracks or surface inhomoaenitv-- were rejected. Preparation of H2-H2O Mixtures. H2-H2O mixtures were prepared by the combustion of H2-O2, mixtures in a pyrex glass chamber in the presence of a catalyst. Alumina pellets coated with palladium, supplied by Englehard Industries, were used as the catalyst. Purified grades of hydrogen and oxygen were used which were repurified by usual techniques. Hydrogen before entering the combustion chamber was passed through an activated alumina H2O absorption bulb, with copper turning at the top. The cover of this bulb was not made pressure-tight so that any pressure development in the hydrogen line would cause the cover to blow off and also the copper turnings would act as a flame arrester in the case of a flashback from the combustion flame. Oxygen flow rates were measured with a bubble flow meter after purification with 1 pct accuracy. Hydrogen flow rates were measured by "precision wet test meter" and the amount of unburnt hydrogen was accurately measured by a bubble flow meter, after condensing water vapor in the gaseous stream. The Pyrex glass bulb contained concentric Vycor glass tubes as shown in Fig. 1. Oxygen was prevented from diffusing into the hydrogen line by threading platinum wire through pores at the combustion end of gas inlet tube. The glass bulb was heated with a Kanthal heating wire pasted in asbestos paper. The surface temperature of the bulb was measured with a thermocouple and adjusted to remain at approximately 350°C. The gaseous reaction chamber also served as a preheater for gases to avoid thermal segregation. The following sequence of operation was adopted. 1) Nitrogen was passed through the outer concentric tube to purge the catalyst bulb of oxygen. 2) Hydrogen was introduced through the inner tube until a steady flow was obtained. 3) Oxygen was then introduced into the nitrogen stream passing through the outer tube. 4) When combustion had commenced and a flame was visible over the platinum wire, the N2 was turned off.
Citation

APA: G. Nabi W-K. Lu  (1969)  Part XII – December 1968 – Papers - Reduction Kinetics of Hematite to Magnetite in Hydrogen-Water Vapor Mixtures

MLA: G. Nabi W-K. Lu Part XII – December 1968 – Papers - Reduction Kinetics of Hematite to Magnetite in Hydrogen-Water Vapor Mixtures. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1969.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account