Part XII – December 1968 – Papers - Sigma-Its Occurrence, Effect, and Control in Nickel-Base Superalloys

The American Institute of Mining, Metallurgical, and Petroleum Engineers
J. R. Mihalisin C. G. Bieber R. T. Grant
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
16
File Size:
1734 KB
Publication Date:
Jan 1, 1969

Abstract

A growing demand for longer service life of gas turbines has placed increasingly rigorous requiret~rents upon superalloys employed for that application. Long-titne testing at high temperature has revealed that phase transformations occur in all superalloys. A common one of particular interest is o formation. Presented here are studies made to identify a and to characterize its formation and effect on properties in three cast nickel-base superalloys—IN 100 alloy, alloy 713C, and alloy 713LC. Methods are discussed by which o can be eliminated or inhibited in IN 100 alloy and alloy 713C. Evidence was obtained to indicate that some types of o may be more detrimental than others. Limitations in the electron vacancy approach to o prevention are pointed out, and it is shown how alternative approaches, such as reducing a complex superalloy matrix to the form of a pseudo-ternary system permitting equilibrium diagram treatment, lead to additional insights into the formation of in these alloys. AROUND 1960. Beiber1 developed IN 100 alloy, which still remains one of the strongest commercially available nickel-base superalloys. The principle used in the design of this alloy was to produce large quantities of y' phase in a y matrix through the use of copious amounts of aluminum and titanium. In 1963, ROSS' showed that when certain heats of this alloy were held for a long time at 1650°F they formed an acicular phase, subsequently identified as a.3 a is a hard and brittle phase first discovered in the Fe-Cr system by Bain and Griffiths.4 They termed it the "B" constituent. Subsequently this same phase was found in other systems, primarily those of the transition elements, and acquired the name "a" by which it is now known. The crystal structure of the a phase was first determined in the Fe-Cr system in 1950.5 It was shown to be tetragonal with a c/a ratio of about 0.52. as is the case with a found in other systems. This characteristic crystal structure is now the means by which a is identified. In superalloys, such as IN 100 alloy. large amounts of o impair the high-temperature creep strength and drastically reduce room-temperature tensile ductility. Discovery of o phase in some heats of IN 100 alloy quickly led to investigations of other superalloys for similar transformations. It was found that many of the stronger, more highly alloyed. super-alloys were indeed susceptible to o formation. This investigation has been concentrated on three commercial alloys: IN 100 alloy, alloy 713C, and alloy 713LC. J.R.MIHALISIN,MemberAIME, and C.G.BIEBER are with The International Nickel Co., Inc., Paul D. Merica Research Laboratory, Sterling Forest, Suffern, N. Y. R. T. GRANT, Member AIME, is with The International Nickel Co., Inc., Pittsburgh, Pa. Manuscript submitted May 22. 1968. IMD A detailed study has been made of the phase transformations and their relation to a formation along with a consideration of electron vacancy approaches for predicting a-forming propensity in these alloys. EXPERIMENTAL PROCEDURE Phase transformations were studied by light and electron microscopy, electron diffraction, microprobe investigations, and X-ray diffraction. Specimens for light micrographic examination were prepared by conventional grinding and polishing followed by etching with glyceregia (2:l HC1/HNO3 + 3 glycerine by volume). Photomicrographs of stress-rupture specimens were taken adjacent to the fracture unless otherwise noted in the text. Negative replicas for electron microscopy were taken from surfaces electropolished with a solution of 15 pct H2SO4 in methanol. For carbon extraction replication, a solution of 10 pct HC1 in methanol was used. A Siemens Elmiskop I was used for all electron microscopy. Selected-area diffraction studies were made at 80 kv using evaporated aluminum for standardizing the patterns. A nondispersive electron microprobe attachment was used to analyze the extracted precipitates chemically. The fluorescent X-rays were recorded using a flow counter containing P10 gas (90 pct Ar-10 pct methane) with a beryllium window and a single-channel pulse-height analyzer. The pulses from the analyzer were passed to a scaler-ratemeter and differential curves of counting rate vs pulse amplitude were obtained. The base line of the analyzer was driven with a synchronous motor at 0.5 v per min and a channel width of 0.5 v. The time for 105 counts was printed out for each 0.5-v increment. The microscope was operated at 80 kv with beam currents of 1 to 20 pa. This equipment detects elements from atomic number 13 to 40. X-ray diffraction studies were usually made on residues electrolytically extracted in 10 pct HC1 in H2O, although in one case a pattern was obtained from an etched surface of a metallographic specimen. A Siemens Crystalloflex IV was used with iron-filtered CoKa radiation. X-ray patterns were recorded using a goniometer speed of : deg per min. The scintillation counter and pulse-height analyzer operated at a channel height of 10 v and a channel width of 12 v. The equipment was calibrated with a powdered gold standard. The residues usually contained a number of phases. several of which could not be found in the ASTM card file. In addition, as is shown for the case of a phase in IN 100 alloy, other phases had a somewhat different lattice parameter from that reported in the ASTM card file, making it difficult to separate and identify constituents by comparison with ASTM d spacings. For these reasons, phases were identified on the basis of the lattice parameter obtained by indexing the ob-
Citation

APA: J. R. Mihalisin C. G. Bieber R. T. Grant  (1969)  Part XII – December 1968 – Papers - Sigma-Its Occurrence, Effect, and Control in Nickel-Base Superalloys

MLA: J. R. Mihalisin C. G. Bieber R. T. Grant Part XII – December 1968 – Papers - Sigma-Its Occurrence, Effect, and Control in Nickel-Base Superalloys. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1969.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account