Part XII – December 1969 – Papers - Fracture Behavior of an Fe-Cu Microduplex Alloy and Fe-Cu Composites

The American Institute of Mining, Metallurgical, and Petroleum Engineers
S. Floreen H. W. Hayden R. M. Pilliar
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
8
File Size:
759 KB
Publication Date:
Jan 1, 1970

Abstract

The fracture behavior of a 50 pct Cu-50 pct Fe mi-croduplex alloy, laminated composites of copper and iron and an extruded 50-50 Cu-Fe elemental powder composite was studied. Very low ductile-brittle transition temperatures were achieved in all cases, but for different reasons. In the microduplex alloy both the initiation and also the propagation of cleavage fractures appeared retarded by the very small in-terphase distances. In the composites, crack propagation through the sumples was prevented in most cases by delamination fractures perpendicular to the advancing cracks. These delaminations occurred at different regions and by different mechanisms in the various composites. In the extruded powder composite, de-lamination appeared to take place along preexisting flaws. In the crack arrest geometry of the laminated plates, delamination took place by localized shear fractures within the copper near the Fe-Cu interfaces. In this case delamination was enhanced by thicker laminate layers, and by having the resistance to shear failure of the copper sufficiently low compared to the toughness of the iron. BRITTLE fracture in engineering materials has long been a problem, and many different ways of preventing it have been considered. One method that has been of growing interest lately is to prevent crack propagation by the introduction of mechanical discontinuities into the structure. These discontinuities may act in several ways. They may simply act as crack stoppers. They may introduce secondary fractures such as de-laminations that deflect the initial crack into new, less damaging directions. Alternatively, they may subdivide a fairly large bulk sample that would have been loaded in plane strain, for example, into a number of subunits that are individually loaded in plane stress and thus are more resistant to fracture. Other mechanisms, or combinations of mechanisms, are also feasible. A number of methods exist for introducing mechanical discontinuities into a structure. Composites by their nature have discontinuities in structure, and numerous studies have shown that fracture propagation in materials of this type can be radically changed by suitable control of the composite parameters. Of particular significance to the present work are recent investigations of layered composites made by joining high strength steel sheets by various means.'-4 These studies have shown that through proper control of the mechanical properties of the bonds joining the sheets it was possible to introduce delamination fractures that markedly improved the overall toughness of the composites and in some cases completely prevented through-the-thickness fractures. Another technique for introducing structural discontinuities is simply to use a two-phase alloy. It has been recognized for many years that a small amount of a second phase may improve toughness either by homogenizing plastic flow and thus preventing localized stress concentrations that nucleate fracture, or by interacting with an advancing crack. In most of these studies of two-phase materials, the decreases in ductile-brittle transition temperatures produced by the second phase were relatively small. More recently, work on two-phase stainless steels having a very fine grain microduplex structure has shown that the presence of on the order of 40 to 50 pct of a tougher second phase may lower the ductile-brittle transition temperature of the brittle phase by approximately 300°F. 5-7 In these alloys delaminations were seldom observed. The tougher second phase appeared to minimize the ease of both the initiation and the propagation of cleavage fractures. These results show that both the composite approach and the microduplex alloy approach are effective methods of preventing brittle fracture. Therefore, it was of interest to compare the fracture behavior of a microduplex alloy with composites made from the two-phases that were present in the alloy. To simplify this comparison the 50 pct Cu-50 pct Fe system was selected for study. At low temperatures the equilibrium tie line phases in this system are essentially pure ferrite and pure copper. A 50-50 alloy was cast and hot worked to produce a microduplex structure. Two types of composites were studied; laminated structures prepared by roll bonding iron and copper sheets of the tie line compositions, and an extruded powder composite made from high purity elemental powders. The fracture behavior of these materials was then compared. EXPERIMENTAL PROCEDURE Alloy Preparation. The 50-50 Fe-Cu alloy and the components for the roll bonded composites were prepared by vacuum induction melting 30-lb heats using electrolytic grades of iron and copper as charge materials. A carbon boil was used to deoxidize the melts. Small additions of copper and iron were made to the iron and copper heats, respectively, to approximate
Citation

APA: S. Floreen H. W. Hayden R. M. Pilliar  (1970)  Part XII – December 1969 – Papers - Fracture Behavior of an Fe-Cu Microduplex Alloy and Fe-Cu Composites

MLA: S. Floreen H. W. Hayden R. M. Pilliar Part XII – December 1969 – Papers - Fracture Behavior of an Fe-Cu Microduplex Alloy and Fe-Cu Composites. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1970.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account