Part XII – December 1969 – Papers - The Strain Aging of Iron Under Stress

The American Institute of Mining, Metallurgical, and Petroleum Engineers
E. A. Almond
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
5
File Size:
360 KB
Publication Date:
Jan 1, 1970

Abstract

An attempt is made to explain the effect of stress on strain aging by examining the mechanism of yielding for a group of aged dislocations. The experimental results on which the theory is based indicate that a linear relationship develops between the aging stress and the discontinuous yield effect in a low carbon steel THE discontinuous yield effect that occurs in bcc metals after strain aging is usually explained by the interaction of interstitial atoms with individual dislocations. Attempts have been made to interpret the kinetics of strain aging in terms of interstitial segregation to nonrandom groups of dislocations1-3 but apart from Li's4 work little or no effort has been made to examine the effect of groups of aged dislocations on mechanical properties. It appears likely that such groups can be stabilized if a positive load is maintained on the specimen during aging5 and, furthermore, that the enhanced strain aging effect associated with aging under load might be due to the stability of these aged groups. The effects associated with this latter phenomenon have been described by Almond and Hull, Ref. 5, Figs. 2 and 3, and it is found that the upper yield stress, the lower yield stress, and the yield point elongation are increased by aging under load. The yield point elongation reaches a maximum value but the enhanced effect persists in the upper and lower yield stress values even after extended aging treatments when the general level of the flow stress curve rises. The flow stress, as measured at 8.5 pct total strain, however, is independent of aging stress. Almond and Hull5 showed that it was unlikely that the differences in mechanical properties could be caused by stress enhanced diffusion and they suggested that the effect was in some way associated with the different dislocation distributions that are obtained when specimens are aged with and without an applied stress. At that time no explanation was offered for the strengthening effect produced by stabilized dislocation distributions but additional tests have been performed to establish a quantitative relationship between aging stress and mechanical properties, and also to examine more closely the effect of varying the procedure for applying the aging stress. EXPERIMENTAL The material used was an iron wire containing 0.015 wt pct C, 0.002 wt pct N, and 0.006 wt pct 0. Tensile specimens with a 1 cm gage length and 0.08 cm diam were annealed at 850°C for 1 hr in vacuum to establish a grain diameter of 0.032 mm and then aged at 200°C for 24 hr. After this treatment the amount of carbon left in solution would be less than 10-4 wt pct, and ni- as aging time is increased. It is suggested that this observation, and effects that arise from varying the method of applying the aging stress, can be explained by a strengthening mechanism whereby dislocations are more difficult to move when they are aged in piled-up groups. trogen would be the main cause of strain aging. Tensile tests were performed in a hard beam machine at a constant crosshead speed of 0.02 cm per min and the specimen chamber was immersed in a temperature controlled silicone oil bath at 32" * 0.05"C. RESULTS All specimens were prestrained 5 pct before aging under stress and the results in Figs. 1 to 5 show the effect of aging time and aging stress on the following parameters ?UY = auy — ?F(5); i.e., the difference between the upper yield stress after aging,?uy, and the flow stress after prestraining 5 pct, ?f(5). ?LY = sly —sf(5); the difference between the lower yield stress after aging, ojy, and the flow stress after prestraining 5 pct. s8.5 = the flow stress at 8.5 pct total strain after aging at 5 pct strain. Varying the Loading Procedure. Three variations in the procedure for applying the aging stress were examined; i) After prestraining, the specimen was unloaded to a stress of 18 kg mm-2, aged at that stress, and then tested. ii) After prestraining, the specimen was unloaded to 2 kg mm-" then reloaded to 18 kg mm-', aged at that stress, and tested. iii) After prestraining, the specimen was unloaded to 18 kg mm-', aged at that stress, then unloaded to 2 kg mm- before testing. Specimens were unloaded or reloaded by decoupling a clutch in the drive transmission of the tensile machine. This enabled the crosshead to be driven manu-
Citation

APA: E. A. Almond  (1970)  Part XII – December 1969 – Papers - The Strain Aging of Iron Under Stress

MLA: E. A. Almond Part XII – December 1969 – Papers - The Strain Aging of Iron Under Stress. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1970.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account