Part XII - Papers - Grain Boundary Segregation and the Cold-Work Peak in Iron Containing Carbon or Nitrogen

The American Institute of Mining, Metallurgical, and Petroleum Engineers
M. L. Rudee R. A. Huggins
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
5
File Size:
1262 KB
Publication Date:
Jan 1, 1967

Abstract

Samples of iron containing nitrogen or carbon have been given treatments similar to those used in cold-work peak (CWP) measurements and examined by transmission electron microscopy. It was observed that the unusual and nonreproducible behavior of the carbon CWP can be explained by a strong tendency for carbon to form grain boundary precipitates at temperatures below those used for CWP measurements. These precipitates dissolved at the temperatures used in the CWP measurements. There was no evidence for nitrogen precipitation at grain boundaries. There was no indication of precipitation along dislocations in either carburized or nitrided samples given treatments similar to those of CWP measurements. Although it is possible that subelectron-microscopic clustering had occurred, this observation supports the theories of the CWP that are based on continuous atmospheres rather than on individual precipitates. In an earlier paper,' the present authors developed a new distribution function to predict the occupation of sites for interstitial impurity atoms around a dislocation. When this distribution was applied to the case of carbon and nitrogen in iron, it predicted that, if the temperature dependence of the concentration of solute atoms in the matrix was controlled by the presence of equilibrium carbide or nitride precipitates, the tendency for nitrogen to segregate to dislocations would be greater than that for carbon even though their binding energies to dislocations are identical. The cold-work internal-friction peak (CWP) is considered by most authors to be produced by the interaction of interstitial impurities with dislocations. Many investigators have studied the CWP in iron containing carbon and nitrogen and have observed a significant difference between its behavior in the two cases. In this paper a series of experiments will be reported that were initiated to determine whether the application of the new distribution function would explain the observed differences between the carbon and nitrogen CWP. Although it was found that the distribution function, pev se, did not explain the differences, the differences became clear, and some insight into the mechanism of the CWP was realized. Before reporting the present experiments, the literature pertaining to the differences between the carbon and nitrogen CWP in iron and the various mechanisms proposed for the CWP will be reviewed. LITERATURE REVIEW Snoek2 first observed the CWP in iron specimens containing nitrogen, but also reported a weak and unreliable peak in carburized samples. Later, Ke3 established that the CWP height was proportional to the degree of deformation. The presence of nitrogen alone would produce a peak of the same size as found in a sample containing both nitrogen and carbon, and KG concluded that the CWP was caused by nitrogen. In a discussion of G's paper it was reported that Dijkstra had investigated the CWP in samples that contained only carbon. He found it to be much smaller than the nitrogen peak and "unstable". KG et al.4 charged specimens of iron with both carbon and nitrogen. They observed that the carbon CWP was much smaller than that observed in nitrided samples, but that aging at 300°C caused the carbon peak to increase. A similar treatment produced no change in a nitrogen peak. Annealing at higher temperatures caused the height of the CWP in both the nitrogen and carbon samples to decrease. This behavior was also observed by Kamber et al. 5 who found that the activation energy for the annealing of the CWP was identical with the activation energy for the self-diffusion of iron. They concluded that the annihilation of dislocations by climb caused the reduction in the CWP height. Kamber et al. studied the "unstable" carbon peak in detail. They measured both the Snoek and CWP during various aging treatments. In carburized samples, aging at 100°C caused the Snoek peak to disappear, although the CWP peak remained small. However, a subsequent treatment for 5 hr at 240°C caused the CWP to reach a maximum. They proposed that an additional location for the carbon, other than whatever site produced the CWP, is present. In nitrided samples the CWP was completely developed as soon as a measurement was made; additional sites are not present. No explanation of either the additional site or the difference in the behavior of carbon and nitrogen was offered. petarra5 performed a systematic study of the effect of composition on the CWP. Using three kinds of "pure" iron, he showed that there was a residual CWP when the carbon and nitrogen concentrations had been reduced to less than that detectable by Snoek-peak measurements. He observed the same general annealing behavior and composition dependence as previous investigators, with the following exceptions. On first measuring the carbon CWP, it was found to be identical with the residual peak, and essentially independent of the carbon content. If the CWP was measured a second time in the same sample, it increased in size, but was still only about one-fourth the size of a CWP in a sample of the same iron nitrided to the same composition. On the other hand, a series of annealing experiments showed that the nitrogen CWP was not al-
Citation

APA: M. L. Rudee R. A. Huggins  (1967)  Part XII - Papers - Grain Boundary Segregation and the Cold-Work Peak in Iron Containing Carbon or Nitrogen

MLA: M. L. Rudee R. A. Huggins Part XII - Papers - Grain Boundary Segregation and the Cold-Work Peak in Iron Containing Carbon or Nitrogen. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1967.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account