Producing – Equipment, Methods and Materials - Pressure Measurements During Formation Fracturing Operations

The American Institute of Mining, Metallurgical, and Petroleum Engineers
J. K. Godbey H. D. Hodges
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
5
File Size:
1543 KB
Publication Date:

Abstract

In order to better understand the fracturing process, bottom-hole pressures were measured during a number of typical fracturing operations. A recently developed system was used that allows simultaneous surface recording of both the bottom-hole and wellhead pressures on the same chart. The results from six fracruring treatments are summarized on the basis of the pressure data obtained. Al-though no complete analysis is attempted, the value of accurate pressure measurements is emphasized. Important characteristics of the bottom-hole pressure record do not appear at the wellhead because of the damping effect of the fluid-filled column. In four of the six treatments described, the formations apparently fractured during the initial surge of pressure with only crude oil in the well. The properties of the fluids used during the treatments are given and the fluid friction losses are obtained directly from the pressure records. This technique is also shown to be adequate for determining when various fluids, used during the process, enter the formation. INTRODUCTION Hydraulic fracturing for the purpose of increasing well productivity is now accepted in many areas as a regular completion and workover practice. Numerous articles have appeared in the literature discussing the various techniques and theories of hydraulic fracturing'. In general, three basic types of formation fractures are recognized today. These are the horizontal fracture, the vertical fracture, and fractures along natural planes of weakness in the formation'. Any one or all three of these fracture types may be present in a fracturing operation. However, with only the wellhead pressure record as a guide, it is difficult at best to determine if the formation actually fractured, and is almost impossible to determine the type of fracture induced. These difficulties arise in part because the wellhead pressure record, especially when fracturing through tubing, does not accurately reflect the pressure variations occurring at the formation. Several factors contribute to this effect and preclude the possibility of using the wellhead pressure as a basis for accurately calculating the bottom-hole pressure. These factors are: 1. The compressibilities of the fluids which damp the pressure variations. 2. The changes in the densities of the fluids or apparent densities of the sand-laden fluids. 3. The flowing friction of the various fluids and mixtures, which is dependent on the flow rates and the condition of the tubing, casing, or wellbore. 4. The non-Newtonian characteristics of a sand-oil mixture and its dependence upon the fluid properties, the concentration of sand, and the mesh size used. 5. The unknown and variable temperatures throughout the fluid column. Because of these reasons it was determined that in order to obtain a more accurate knowledge of the nature of fracturing, the bottom-hole pressure must be measured along with the pressure at the surface during a fracturing treatment. Even with accurate pressure data, a reliable estimate of the nature of fracturing is still dependent upon knowledge of the tectonic conditions. However, the hydraulic pressure on the formation is basic to any approach to a complete analysis. In order to accomplish this objective a system was developed to record the wellhead and bottom-hole pressures simultaneously at the surface. By recording both pressures on a dual pen strip-chart recorder, it was possible to greatly expand the time scale so that rapid pressure variations would be faithfully recorded. By such simultaneous recording, time discrepancies inherent in separate records are eliminated, thus overcoming one of the most difficult problems associated with bottom-hole recording systems. This paper illustrates the results obtained by using this system during six typical fracturing operations. All of these tests were taken in wells that were treated through tubing. By a direct comparison of the wellhead and bottom-hole pressures, the importance of obtaining complete pressure information during a fracturing treatment is emphasized. THE INSTRUMENTATION AND PROCEDURES The bottom-hole pressure measuring instrument consisted of a pressure-sensing element, a telemetering section, and a lead-filled weight or sinker bar. The pressure-sensing element used was an isoelastic Amerada pressure-gauge element. By using an isoelastic element, no temperature compensation was necessary in the tests described, since the temperature was believed to be well below the maximum temperature limit of 270°F. The rotary output shaft of this helical Bourdon tube element was coupled to a precision miniature potentiometer. The rotation of the pressure-gauge shaft thus changed the resistance presented by the potentiometer
Citation

APA: J. K. Godbey H. D. Hodges  Producing – Equipment, Methods and Materials - Pressure Measurements During Formation Fracturing Operations

MLA: J. K. Godbey H. D. Hodges Producing – Equipment, Methods and Materials - Pressure Measurements During Formation Fracturing Operations. The American Institute of Mining, Metallurgical, and Petroleum Engineers,

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account