Radiation Protection In Swedish Mines. Special Problems Jan 0lof Snihs

- Organization:
- Society for Mining, Metallurgy & Exploration
- Pages:
- 3
- File Size:
- 186 KB
- Publication Date:
- Jan 1, 1981
Abstract
INTRODUCTION Investigations of radon and radon daughter concentrations in Swedish [non-uranium] mines started in the late 1960's. The first screening measurements showed that the average annual exposure to radon and radon daughter products was 4.7 WLM. The main reason for high radon and radon daughter concentrations was inefficient ventilation and radonrich water entering the mine. In the radon regulations worked out later it was stated that no miner should be exposed to more than 60 000 pCi h/1 equilibrium equivalent concentration of radon annual exposure, corresponding to 3.6 WLM. Now, 1981 the situation has changed considerably. From the average annual exposure of 4.7 WLM in 1970 it is now only 0.7 WLM. Sweden has up to now had only one [uranium] mine and the work there has only been investigative. However, there are plans for a commercial uranium mine in another part of Sweden. The radon problems in these mines are widely different depending on the mineralogy. NON-URANIUM MINES The radiation problems in Swedish mines were not recognised until the late 60's. The first radon and radon daughter measurements were made in some sulphide ore mines in 1967 (1). The radon and radon daughter concentrations were surprisingly high for non-uranium mines. In order to have a complete picture of the radon situation in Swedish mines the National Institute of Radiation Protection (NIRP) decided to make measurements in all, at that time about 60 mines (2). To get results as fast as possible measurements on radon gas seemed most appropriate to start with. Sampling was made by mailing a number of evacuated 4.8 litre conventional propane containers from NIRP to each mine. The containers were then opened at the place of interest. After sampling the containers were sealed and then mailed back to the institute for measurement. The measurements were made in ionization chambers. This method only gave the radon concentration and the radon daughter concentration was estimated by multiplying the radon concentration by an assumed equilibrium factor. The equilibrium factor is defined as the ratio of the total potential alpha energy for the given daughter concentration to the total potential alpha energy of the daughters if they are in equilibrium with the given radon concentration. The results of this first preliminary survey indicated that a great many of the Swedish miners probably had an annual radon daughter exposure of more than 3.6 WLM. As the radiation exposure in non-uranium mines was not regulated in either the Swedish Radiation Protection Act or the Swedish Labour Protection Act work was started on special radon regulations. A lung cancer mortality study was also started. To check the results of the first survey and to get experience and knowledge of radon problems in mines, it was decided that personnel from the NIRP should visit each mine for a detailed investigation of radon and radon daughter concentrations starting with the ones with the highest radon concentrations. The main reasons for these so-called "basic measurements" were: 1. To estimate the doses received by Swedish miners 2. To find the sources of the high radon and radon daughter concentrations 3. To find appropriate counter-measures 4. To determine the most typical equilibrium factor for each mine. Unlike most uranium mines the reason for high radon concentrations in non-uranium mines is seldom the occurrence of highly radioactive minerals. The main sources were found to be waste-rock and radon-rich water. In order to filter and warm up the inlet air, especially in winter time, it was very common at that time to suck the air through broken wasterock. By doing so the air was contaminated with radon from the waste-rock and radon-rich water in it. It is noteworthy that the radium and uranium concentration in the waste-rock is relatively low. The uranium concentration is only of the order of 15 - 20 ppm. The action to prevent this contamination of the inlet air was to change the direction of the ventilation and in the case of radon-rich water entering the mine the action was to prevent the air coming into contact with the water. The first calculation of the radon daughter exposure of Swedish miners was based on radon gas measurements. The radon daughter concentration was estimated by using an assumed equilibrium factor of 0.5. Later when the mines were visited by institute staff it was possible to compare the assumed equilibrium factor with the measured ones. It was found that the factor varied from 0.15 at the air inlet to 1.0 at the air outlet and the average equilibrium factor on workplaces for almost all mines was between 0.4 and 0.6. The result of the exposure calculation in 1970 showed that more than 40 % of the miners had an annual radon daughter exposure of more than 3.6 WLM. The overall average was 4.7 WLM and the maximum annual expo-
Citation
APA:
(1981) Radiation Protection In Swedish Mines. Special Problems Jan 0lof SnihsMLA: Radiation Protection In Swedish Mines. Special Problems Jan 0lof Snihs. Society for Mining, Metallurgy & Exploration, 1981.