Reflected Light Microscopy of Pyrometallurgical Products from a Simulated Commercial Flash Smelter

The Minerals, Metals and Materials Society
Richard D. Hagni
Organization:
The Minerals, Metals and Materials Society
Pages:
17
File Size:
780 KB
Publication Date:
Jan 1, 1987

Abstract

Polished sections of pyrometallurgical intermediate products from a simulated commercial flash furnace were examined by reflected light microscopy, scanning electron microscopy-energy dispersive spectrometry and electron backscatter analysis, and microprobe analysis for phase and textural relationships. The smelter feed is a copper concentrate from a porphyry copper deposit. The concentrate consists primarily of chalcopyrite, bornite and pyrite with smaller amounts of covellite, chalcocite, molybdenite, magnetite, galena, and sphalerite. The flash furnace reactions for pyrite and chalcopyrite can be observed by reflected light microscopy. Reacted angular particles of pyrite exhibit successive rims of fibrous pyrrhotite and hematite or magnetite. Reacted angular chalcopyrite particles show successive rims of bornite, digenite, and chalcocite. Spherical particles, formed by the complete melting of former pyrite particles, consist of variable amounts of granular pyrrhotite with magnetite rims and minor hematite. Spherical particles, formed by the complete melting of former chalcopyrite particles, exhibit exsolution intergrowths with varying proportions of intermediate solid solution, bornite, digenite, and chalcocite and have rims of hematite, magnetite, and copper-iron spinel. Sphalerite and molybdenite do not show evident mineralogical reactions.
Citation

APA: Richard D. Hagni  (1987)  Reflected Light Microscopy of Pyrometallurgical Products from a Simulated Commercial Flash Smelter

MLA: Richard D. Hagni Reflected Light Microscopy of Pyrometallurgical Products from a Simulated Commercial Flash Smelter. The Minerals, Metals and Materials Society, 1987.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account