Reservoir Engineering Equipment - Transient Pressure Distributions in Fluid Displacement Programs

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 4
- File Size:
- 1155 KB
- Publication Date:
Abstract
The Umiat oil field is in Naval Petroleum Reserve No. 4 between the Brooks Range and Arctic Ocean in far-northern Alaska. The Umiat anticline has been tested by 11 wells, six of which produced oil ; however, [lie productive capacity and recoverable reserves of the field are subject to considerable speculation because of unusual reservoir conditions and because several wells appear to have been .seriously damaged during drilling and completion. Oil is produced at depths of 275 to 1,100 ft; the depth to the bottom of the permanently frozen zone varies from about 800 to 1,100 ft, .so that most of the oil reserves are in the permafrost Reservoir pressures are estimated to range from 50 to 350 psi, increasing with depth, and the small amount of gas dissolved in the oil is the major source of energy for production. Laboratory tests were made on cores under simulated permafrost conditions to estimate oil recoverable by solution-gas expansion from low saturation pressures. The cores were also tested for clay content and susceptibility to productivity impaiment by swelling clays and increased water. content if exposed to fresh water. The results indicate that oil can be produced fronz reservoir rocks in the permafrost and that substantial amounts of oil can be produced from depletion-drive reservoirs by a pre.s.r~lrr drop of as little as 100 psi below the saturation pressure. Freezing of formation water reduces oil productivity much more than that due to increased oil viscosity: Failure of we1ls drilled with rtuter-base mud to produce is attributed to freezing of water in the urea immediately surrounding the wellbore. Swelling clays apparently contributed very little to the plugging of the wells. INTRODUCTION Naval Petroleum Reserve No. 4 lies between the Brooks Range and the Arctic Ocean in northern Alaska. The Umiat oil field is located in the southeastern part of the Reserve and is about 180 miles southeast of Point Barrow (the only permanent settlement in the Reserve and the primary supply point for drilling of the wells at Umiat). Eleven wells were drilled for the U. S. Department of the Navy, Office of Naval Petroleum and Oil Shale Reserves, between 1944 and 1953 to test the oil and gas possibilities of the Umiat anticline. Six of these wells produced oil in varying quantities and the best one pumped about 400 B/D.' Estimates of recoverable oil range from 30 to 100 million bbl. The main oil-producing zones are two marine sandstone beds in the Grandstand formation of Cretaceous age: these are referred to as the upper and lower sands. Good oil shows were found throughout the sand settions in the first three wells drilled on the structure, but the highest rate of oil production obtained on any 01 the many tests was about 24 BOPD. These first wells were drilled with conventional rotary methods using water-base mud; later wells were drilled either with cablc tools using brine or rotary tools using oil or oil-base mud. These experiments were successful as is shown by comparing the oil production from Well No. 2 with that from No. 5. These two wells are only 200 ft apart and are located at about the same elevation on the structure. Well No. 2. drilled with a rotary rig using water-base mud, was abandoned as a dry hole after all formation tests were negative. Well No. 5. drilled with cable tools and reamed with a rotary using oil, pumped 400 BOPD which was the maximum capacity of the pump and less than the capacity of the well. These field results indicated that the producing sands were extremely "water sensitive" and it was assumed that the cause of this sensitivity was the presence of swelling clays in the sands. Because of the very unusual reservoir conditions and the difficulties encountered in completing oil wells in the permafrost. the Navy asked the U. S. Bureau of Mines to make laboratory studies under simulated permafrost conditions to assist them in estimating the production potential of the field and the recoverable reserves. These tests were designed to determine the cause of the plugging of wells in the permafrost and to test oil recovery from frozen sand by solution-gas expansion with the oil gas-saturated at very low pressures. EXPERIMENTAL METHODS AND PROCEDURES Samples Analyzed Core samples were analyzed that represent the lower sand in Umiat Well No. 7, the upper sand in No. 3. and both the upper and lower sands in No. 9. These sands should be productive in all of the wells because of their location on the structure. Core samples from
Citation
APA:
Reservoir Engineering Equipment - Transient Pressure Distributions in Fluid Displacement ProgramsMLA: Reservoir Engineering Equipment - Transient Pressure Distributions in Fluid Displacement Programs. The American Institute of Mining, Metallurgical, and Petroleum Engineers,