Reservoir Engineering-General - Effect of Vertical Fractures on Reservoir Behavior-Results on Oil and Gas Flow

The American Institute of Mining, Metallurgical, and Petroleum Engineers
M. Prats J. S. Levine
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
8
File Size:
494 KB
Publication Date:

Abstract

A homogeneous and uniform cylindrical reservoir containing oil and gas is fractured vertically on completion and is produced at a constant bottom-hole pressure. The fracture has an infinite flow capacity, is of limited lateral extent and is bounded above and below by the impermeable strata defining the vertical extent of the reservoir. Results show that such a fractured reservoir can be represented by a reservoir of circular symmetry having very nearly the same production history. The well radius of this circular reservoir is about 1/4 the fracture length and is essentially the same as that obtained previously for a single fluid of constant compressibility. At the same value of cumulative oil production, gas-oil ratios of fractured reservoirs producing at constant terzinal pressure are larger than those of reservoirs having no fractures. This leads to more inefficient use of the reservoir energy in fractured wells and results in lower reservoir pressures for the same cumulative oil production. The reduction in operating life due to fracturing a reservoir is not as great as that for a slightly compressible fluid. This diflerence can be accounted for by the lower reservoir pressure in the fractured reservoir and its adverse effect on the average mobility and compressibility of the oil. As anticipated, the reduction in operating life increases czs the reservoir permeability decreases. The type of results presented in this report can be used to determine the economic attractiveness of fracture treatments per se, to setect the initial spacing to be used in developing a field, and to compare the relative merits of fracturing available wells and infill drilling. INTRODUCTION The effect of vertical fractures on a reservoir producing either an incompressible or a compressible liquid has already been discussed in the 1iterature.l,2 Those results indicate that the production history of such a reservoir is essentially the same as that of a circular reservoir having an effective well radius of approximately one-fourth the fracture length. The present work reports on the effect of a vertical fracture on a reservoir producing two compressible fluids —oil and gas—by solution gas drive. Because of the empirical nature of the PVT and relative permeability data used to obtain the performance of such reservoirs, results can only be obtained numerically and with the aid of high-speed computers. Since reservoirs lose their radial symmetry when fractured vertically, pressure and saturation can no longer be given only in terms of distance from the well. Two coordinates (such as x and y) must now be used to describe the pressure and saturation within the reservoir, and, since we are dealing with compressible fluids, time is also a variable. Thus the solution of a vertically fractured reservoir requires finding two unknowns (pressure and saturation) in two space variables (say x and y) and in time (t). Since no means are readily and generally available for solving such problems at the present time, we have used the results of previous work1,2 to approximate the effect of a vertical fracture on a reservoir producing both oil and gas by depletion. The purpose of the present wmk, then, is to investigate the possibility of using available numerical techniques (limited at the moment to one space variable) to study the two-space-variable flow behavior resulting from a vertical fracture. Results obtained in the course of this investigation are also reported and discussed. Input and output data of the numerical methods used are given in practical units: BOPD, feet, psi, cp, and md. Results are discussed fist in terms of specific reservoir and crude properties and geometries. Later, dimensionless parameters are introduced in order to extend results to different values of some of the reservoir and fracture properties. IDEALIZATION AND DESCRIPTION OF THE FRACTURED SYSTEM It is assumed that a horizontal oil-producing layer of constant thickness and of uniform porosity and permeability is bounded above and below by impermeable strata. The reservoir has an impermeable, circular, cylindrical outer boundary of radius r,. The fracture system is represented by a single, plane, vertical fracture of limited radial extent, bounded by the impermeable matrix above and below' the producing layer (reservoir). It is assumed that there is no pressure drop in the fracture due to fluid flow. 1 indicates the general three-dimensional geometry of the fractured reservoir. Gravity effects and the effects of differential depletion resulting from variations in hydrostatic head (pressure) will be neglected. Thus, the flow behavior in the fractured reservoir is described by the
Citation

APA: M. Prats J. S. Levine  Reservoir Engineering-General - Effect of Vertical Fractures on Reservoir Behavior-Results on Oil and Gas Flow

MLA: M. Prats J. S. Levine Reservoir Engineering-General - Effect of Vertical Fractures on Reservoir Behavior-Results on Oil and Gas Flow. The American Institute of Mining, Metallurgical, and Petroleum Engineers,

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account