Reservoir Engineering - General - Performance Analysis of a Major Steam Drive Project in the Tia Juana Field, Western Venezuela

The American Institute of Mining, Metallurgical, and Petroleum Engineers
H. J. de Haan L. Schenk
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
9
File Size:
2445 KB
Publication Date:
Jan 1, 1970

Abstract

Scope for Thermal Recovery in Shell's Heavy Oil Fields in Venezuela The main heavy oil reservoirs on the East coast of Lake Maracaibo (Fig. I), known as "Bolivar Coast", initially contained some 20 billion bbl of oil in place with gravities in the range of 10 to 15° API. The current total production rate is about 400,000 B/D. Since the recovery to date is on an average only 12.5 percent of the initial oil in place, these fields offer a vast potential for secondary recovery methods. The reservoirs are characterized by moderate depth (generally 1,000 to 3,000 ft; maximum 5,000 ft), good formation properties such as net oil sand thickness (50 to 300 ft), high porosity (30 to 40 percent) permeability (1 to 3 darcies) and oil saturation (initially about 80 percent) and high oil viscosity (100 to 10,000 cp in situ), all of which are favorable for the application of thermal recovery processes. Since 1957, steam drive, steam "soak" and underground combustion have been tested or are being tested in this area.1-3 This paper deals with a major steam drive test in the Tia Juana field. The test was commenced in Sept., 1961, on the basis of encouraging results of laboratory experiments and pilot field tests, which will be discussed briefly. Early Laboratory Investigation of the Steam Drive Process In 1956 a series of model experiments was carried out in the Koninklijke/Shell Laboratorium, Amster- dam, to investigate the displacement of heavy oil by steam.' The prototype studied was a horizontal, un-consolidated heavy oil reservoir, subjected to a linear steam drive. The model, representing a slab from this reservoir along the main flow direction, consisted of a steel tube filled with oil-saturated sand, provided with layers of rock at the top and bottom to simulate conductive heat losses to cap and base rock. Lateral heat losses, perpendicular to the main flow direction, were minimized by insulating the sides of the model. Heat flow and viscosity and gravity forces were scaled by taking the steam injection rate and sand permeability inversely proportional to the geometric reduction factor of the model, and using materials (oil, steam, cap rock, etc.) identical with those of the prototype. The main feature of the process was a frontal displacement mechanism that was observed within wide ranges of injection pressure and rate, oil viscosity, initial oil saturation and sand permeability. The high stability of this front can be attributed to the high volumetric steam flow rates, combined with the reduction in oil viscosity. High recoveries were obtained due to the low residual oil saturation of about 15 percent in the zone swept by steam. The latter value pertains to the specific test conditions (heavy oil, uncon-solidated sand) and may be lower for light oil, due to the effects of steam distillation. The applicability of this experimental approach is limited, as it does not take into account the fact that
Citation

APA: H. J. de Haan L. Schenk  (1970)  Reservoir Engineering - General - Performance Analysis of a Major Steam Drive Project in the Tia Juana Field, Western Venezuela

MLA: H. J. de Haan L. Schenk Reservoir Engineering - General - Performance Analysis of a Major Steam Drive Project in the Tia Juana Field, Western Venezuela. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1970.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account