Reservoir Engineering–General - Performance of Layered Reservoirs with Crossflow-Single-Compressible-Fluid Case

The American Institute of Mining, Metallurgical, and Petroleum Engineers
D. G. Russell M. Prats
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
15
File Size:
775 KB
Publication Date:

Abstract

The performance of a well in a bounded, layered reservoir with interlayer crossflow has been investigated mathematically. The system studied comprises a centrally located well in a bounded cylindrical reservoir composed of two layers of contrasting physical properties. The reservoir contains a single fluid of small and constant compressibility. In the case of a well producing at constant pressure, the production rate of the crossflow system declines exponentially after the early transient behavior dies out. For wells which produce with constant rate, the pressure-time relationship is linear following the transient. For very early production time, the production rate of the two-layer crossflow system behaves as that of the two-layer stratified system (the case in which the layers are in communication at the well only). Except for early time, in most practical cases the performance of a two-layer reservoir with cross-flow can be duplicated by that of a single-layer reservoir. The equivalent single-layer reservoir must have the same pore volume and the same drainage and wellbore radii as in the two-layer case. In addition, the equivalent reservoir must have a "kh" (permeability x thickness) product equal to the sum of the "kh" products of the respective layers in the crossflow system. If the porosity and permeability distributions are known, the production and pressure behavior of a well with and without crossflow can be predicted. From a comparison of the observed pressure or production performance of a well and the theoretical behavior, the occurrence of interlayer crossflow can be detected. INTRODUCTION When flow is possible across the bedding plane from a low-permeability layer into an adjacent layer of moderate or high permeability, the earlier depletion of the more permeable layer will cause such flow to occur. If this situation exists, the oil recovery from tight layers can be appreciable; thus, the economic ramifications of interlayer crossflow are apparent. The possible importance and extent of flow between adjacent and connected layers — whether resulting from capillary, gravitational, or viscous forces — have been the subject of considerable speculation for many years. Jacquard1 presented a rigorous analysis of the crossflow due to single-fluid expansion occurring between two adjacent and connected layers when the well produces at constant rate. His presentation was entirely mathematical, however, and no numerical results from evaluation of the mathematical solutions were presented. Our objectives in the preparation and presentation of the present paper are essentially twofold— (1) to analyze the behavior of a well which produces a single compressible fluid from a bounded, layered reservoir with interlayer crossflow, and (2) to present practical numerical results and simplified formulas to facilitate engineering analysis of reservoirs with crossflow. The constant-terminal-pressure case was analyzed rigorously, whereas the constant-terminal-rate case was treated only for semisteady-state conditions. DESCRIPTION OF THE IDEALIZED TWO-LAYER RESERVOIR The reservoir to be studied is assumed to be bounded and cylindrical in shape, with a completely penetrating well at its center. The reservoir is composed of two adjacent horizontal layers between which fluid is free to flow. Each layer is assumed to be homogeneous, isotropic and completely filled with a fluid of small and constant compressibility. The total thickness of the reservoir is small enough
Citation

APA: D. G. Russell M. Prats  Reservoir Engineering–General - Performance of Layered Reservoirs with Crossflow-Single-Compressible-Fluid Case

MLA: D. G. Russell M. Prats Reservoir Engineering–General - Performance of Layered Reservoirs with Crossflow-Single-Compressible-Fluid Case. The American Institute of Mining, Metallurgical, and Petroleum Engineers,

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account