Reservoir Engineering – Laboratory Research - Steam-Drive Project in the Schoonebeek Field – The Netherlands

The American Institute of Mining, Metallurgical, and Petroleum Engineers
C. van Dijk
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
8
File Size:
2158 KB
Publication Date:
Jan 1, 1969

Abstract

In Sept., 1960, a steam-drive project was started in the solution-gas drive area of the Schoonebeek field. A part(ern of three five-spots and one four-spot was selected covering an area of 65 acres. The pay in the project area has good lateral continuity and dips slightly to the northeut; it is about SO ft thick and permeability increases from 1,000 and at the bottom to approximately 10,000 md at the top. The oil originally in place was 12.6 X 10' bbl. The oil has an in situ viscosity of about 180 cp. At the start of the steam drive the cumulative primary production due to. solution-ga.7 drive amounted id 4 Percent of the oil originally in place. Reservoir pressure had dropped about 120 psi and no significant primary re-.serves remained. Some 11.3 million bbl of steam (all steam quantities are expressed in barrels of water vaporized) have been injected, resulting in production of an additional 4.1 X I0 9bl of oil, or 33 percent of the oil originally in place. This corresponds to a cumulative oil-stearn rario of 0.37 bbllbbl. It appears that the steam preferentially moves r updip while liquids are produced mainly from downdip wells observations indicate that tile steam flows through only the upper part of the formation. The lateral steam distribution in the pattern is satisfacrory since several prodriction wells hardly reacted and, hence, cori tributcd little to the oil production. Production performance and results from material balance calcutlations agree satisfactorily with the results of large-,scale laboratory experiments. On the basis of these experirmental results the .steam drive, together with a cold water follow-up. is expected to bring ultimate recovery to a value of crt leas: 50 percent of the oil originally in place. No serious production problems have been encountered. However, due to mechanical fuilure, two old prodriction wells and one injection well had to be replaced. An extension of the. steam drive in this area is under connstruction. Introduction The Schoonebeek oil field, discovered in 1943 and developed after World War 11, is situated in the eastern part of the Netherlands. The main oil reservoir in this field is the Valanginian sand. A completely sealing fault divides this reservoir into two areas (Fig. 1): the southwestern part of the sand body where primary production is ob- tained by means of a solution-gas drive, and the remain. der where edge-water drive is the production mechanism. In the greater part of the field the reservoir consists of a single, unconsolidated sand body. The net thickness ranges from 30 to 100 ft and the top is between 2,400 and 2,800 ft below sea level. Formation permeability varies from approximately 10,000 md at the top to values of the order of 1,000 md at the bottom, and porosity is about 30 percent. The reservoir contains a paraffinic oil of 25" API gravity with an in situ viscosity of 160 to 180 cp. Initial oil saturation was high (85 to 90 percent). The relatively large quantity of oil in place (more than 10' bbl), and the low ultimate primary recoveries expected from this field — approximately 15 percent stock-tank oil initially in place (STOIIP) for the water-drive area and 5 percent STOIIP for the solution-gas drive area — clearly indicate ample scope for secondary recovery. Because ies-ervoir and crude characteristics made this field suitable for thermal secondary recovery, a hot-water drive project was started in the water-drive area about 10 years ago. A few years later a steam drive and an in situ combustion project were started in the solution-gas drive area. This paper deals with the performance of the steam-drive project, which was started in Sept., 1960, and which is still in operation. Design of Steam-Drive Project, An experimental investigation of the steam-drive process carried out by schenk in 19561 indicated that under schoonebeek conditions steam injection could be an attractive secondary recovery method. the findings and encouraging results of a pilot test in the Mene Grande field in venezuela,i led to the design of a steam-drive project in the schoonebeek field, Pruject Site and Pattern In 1958 the reservoir pressure in the solution-gas drive area had decreased to about 120 psi, and oil production rates of wells in this area had dropped to 7 to 10 B/D. The cumulative primary production was about 4 percent STOIIP, leaving an oil saturation of approximately 85 percent. In view of the large amount of oil left behind in the reservoir, the solution-gas drive area was selected for the planned steam-drive project. The area in the vicinity of Well S1 3 (Fig. 2) was considered to be suitable since it is at least partly isolated from the rest of the field by faults and the sand is relatively thick (about 80 ft).
Citation

APA: C. van Dijk  (1969)  Reservoir Engineering – Laboratory Research - Steam-Drive Project in the Schoonebeek Field – The Netherlands

MLA: C. van Dijk Reservoir Engineering – Laboratory Research - Steam-Drive Project in the Schoonebeek Field – The Netherlands. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1969.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account