Reservoir Engineering - Vaporization Characteristics of Carbon Dioxide in a Natural Gas-Crude Oil System

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 4
- File Size:
- 272 KB
- Publication Date:
- Jan 1, 1951
Abstract
The vaporization characteristics of carbon dioxide in a League City natural gas - Billings crude oil system were studied at three temperatures, 38°. 120°, and 202°F and for pressures ranging from 600 to 8,500 psi. Variation of carbon dioxide concentration up to 12 mole per cent in the composite showed no effect on the equilibrium vaporization ratios (K values) of the hydrocarbon constituents or on the K value of carbon dioxide itself. It was shown that carbon dioxide is more soluble in crudes than in distillates which is contrary to the behavior of methane. A working chart of carbon dioxide K values is presented. INTRODUCTION The study of the equilibrium vaporization ratios of mixtures of paraffin hydrocarbons has been rather thorough.2,6,7,8,9 In the past few years considerable attention has been paid to the vaporization characteristics of the so-called noncondensable gases such as nitrogen, carbon dioxide, and hydrogen sulfide in mixtures of hydrocarbons. since they usually occur to some extent in most crude oils and natural gases.1,3,4,5 Knowledge of this behavior is useful to both the production and refining phases of the petroleum industry. This paper reports the equilibrium vaporization ratios (K's) of carbon dioxide in a mixture of League City natural gas and Billings crude oil, and compares them to those obtained in a natural gas-distillate system. The equilibrium vaporization ratios for the hydrocarbon components in this system had previously been studied by Roland.' In addition to the determination of the K values for carbon dioxide, the K values for methane and ethane were also determined in order to observe what effect, if any, the presence of carbon dioxide had on these K values. The concentration of carbon dioxide was also varied in order to observe the effect of this variable on the carbon dioxide K values. EXPERIMENTAL PROCEDURE The apparatus used in this study cotlsisted of a stainless steel equilibrium cell of about 2 liters capacity. The cell was mounted on trunions permitting rocking in a thermostatically controlled oil bath. Two high pressure valves fitted with steel tubing were mounted on the top of the cell. one was used for sampling the equilibrium gas phase and the other for sampling the equilibrium liquid phase by means of an induction tube within the cell. Stainless steel tubing from the bottom of the cell led to a mercury reservoir and manifold which was connected to a free-piston type pressure gauge manufac- lured by the American Instrunlent Ctr. and to a volumetric. putrip. The temperature of the oil bath was measured by means of a ralibrated mercury-in-glass thermometer. The recorded temperatures are believed to be accurate to ±0.5 °F. The pressures are correct to 22 psi. The crude oil used in this study was stock tank oil obtained from the Wilcox formation in the Billings Field, Noble County. Okla. The natural gas was obtained from the League City Field. Galveston County, Tex. The oil was treated with anhydrous calcium sulfate in order to remove the last traces of water. To insure a supply of constant composition gas at room temperature the cylinders of League City gas were cooled to about 30°F, inverted, and the condensed liquid was allowed to drain from the cylinders. The analysis of the gas and crude are tabulated in Table I. The carbon dioxide came from Pure Carbonic, Inc., and was .stated to have a purity of 99.5 per cent or better. The procedure used to obtain samples of the equilibrium liquid and vapor was similar to that employed by others making use of the rocking type equilibrium cell.6,7,8 The equilibrium cell was evacuated and calculated quantities of carbon dioxide, natural gas, and crude oil were charged to the cell to the desired pressure. In charging the equilibrium cell an attempt was made to maintain the ratio of the natural gas to crude oil as close as possible to that employed by Roland. After the cell was charged, samples of
Citation
APA:
(1951) Reservoir Engineering - Vaporization Characteristics of Carbon Dioxide in a Natural Gas-Crude Oil SystemMLA: Reservoir Engineering - Vaporization Characteristics of Carbon Dioxide in a Natural Gas-Crude Oil System. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1951.