Reservoir Performance - Field Studies - Reservoir Performance of a High Relief Pool

The American Institute of Mining, Metallurgical, and Petroleum Engineers
E. P. Burtchaell
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
9
File Size:
528 KB
Publication Date:
Jan 1, 1949

Abstract

A method is presented for evaluating the effect of gravity drive upon the reservoir performance of a high relief pool. Conventional forms of reservoir analysis do not consider the alterations in the basic material balance data caused by gravity segregation of reservoir fluids. A procedure is outlined for structurally weighting physical and chemical data for use in the material balance equation. It is demonstrated how actual pool performance data can be utilized to evaluate the future reservoir performance of a gravity drive pool. INTRODUCTION Conventional reservoir engineering. procedure is inadequate for the analysis of an oil pool which has considerable structural relief, steep dips, and good permeability development. In, pools of this type, gravity drainage has an important part in the movement of oil to the wells and the effects of gravity on the overall pool performance should be included in any analysis of reservoir behavior. Many engineers have the opinion that the force of gravity in the movement of oil is not important until the later life of a pool.' Probably the basis for this belief is that gravitational effects may not be readily discernible until a pool is nearing depletion. This would be especially true for pools not having a high degree of structural relief and permeability development. Actually the effects of gravitational forces are at a maximum when the pool pressure is high, for during this period the hydrostatic head of the oil column is at a maximum and the viscosity of the oil is at a minimum. Oil recoveries from pools having favorable gravity drive characteristics may equal or even exceed recoveries which might be expected from water displacement. Field evidence indicates that in some reservoirs gravity drive has resulted in recoveries greater than that which could have been expected from gas expansion or water drive.'.3 Unfortunately, the possible effects of gravity drive on pool performance have been underestimated and other reasons have been sought to explain the high recoveries obtained. There are unquestionably many reservoirs to which the principles of gravity drainage can be effectively applied. It is the purpose of this paper to illustrate one method whereby gravity drive is included in the reservoir analysis of an oil pool. A hypothetical pool, typical of many California reservoirs, is used as an example. As used in this paper, "gravity drive" is defined as the overall effect of gravitational influences on the recovery of petroleum from the reservoir; "gravitational segregation" as the gravity separation of oil and gas within the reservoir; and "gravity drainage" as the downward movement of oil as caused by the force of gravity. SAND VOLUME DATA Fig. 1 presents a structural contour map of the pool under study. Maximum closure is 1950 feet with dips on the south flank approaching 45". The original gas-oil interface was set at -5200 feet. Average thickness of the producing sand was 200 feet. For use in subsequent calculations ill this paper, the pool was subdivided into 100-foot vertical increments and the sand-volume content of each increment was obtained. If the gross sand thickness is small, under 100 feet, the sand-volume content can be obtained by superimposing an isopachous map upon a structural contour map and planimetering the average thickness of each 100-foot increment. For sand thicknesses over 100 feet, one approacli would be to construct a sufficient number of cross-sections of the pool from which the weighted sand-volume of each 100-foot increment could be obtained. Variations in the sand body with depth, as determined by core data, can also be included in the above process. Table I presents a summary of sand-volume calculations, core data, and the original distribution of reservoir hydrocarbons in the pool. Fig. 2 illustrates the structural distribution of the sand-volume content. A total of 171,398 acre-feet is contained within the productive limits of the pool. Assuming an average porosity of 25% and an interstitial water content of 20%, the original hydrocarbon content was computed to be 227,075,000 barrels. DEPTH-PRESSURE DATA The determination of the initial vertical pressure arrangement in the pool is necessary for PVT and material balance calculations. Whenever sufficient data are available, a plot of pressure versus subsea depth of measurement should be made. From this plot a representative fluid pressure gradient can be established. Lacking sufficient initial pressure data, an initial pressure gradient may he estimated or calculated from avail-
Citation

APA: E. P. Burtchaell  (1949)  Reservoir Performance - Field Studies - Reservoir Performance of a High Relief Pool

MLA: E. P. Burtchaell Reservoir Performance - Field Studies - Reservoir Performance of a High Relief Pool. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1949.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account