Smelting of Calcined Basic Nickel Carbonate Concentrate in a 200 kW Dc Arc Furnace

- Organization:
- The Southern African Institute of Mining and Metallurgy
- Pages:
- 7
- File Size:
- 1716 KB
- Publication Date:
- Jan 1, 2015
Abstract
"SynopsisCalcined basic nickel carbonate (BNC) concentrate was smelted in a pilotscale DC arc furnace to produce a nickel metal. The furnace was continuously operated for 12 days (24 hour/day), during which twelve different smelting conditions were investigated, with the major variables being reductant type and feed rate, flux composition and addition, and BNC feed rate.The 200 kW DC arc furnace was operated at power levels between 110 and 165 kW and at a total feed rate of 78 to 96 kg/h, resulting in an average slag and metal tapping temperature of about 1650°C. A total of 7.2 t of BNC were smelted, producing about 5.44 t of nickel metal and 2.94 t of slag. Nickel recoveries of 96.4% and higher were achieved, and the slag nickel content was as low as 0.1%. The major impurities in the metal were iron (mostly from oxygen lancing) and carbon. The calculated feed carry-over was less than 0.85% and the graphite electrode consumption was between 2.8–3.3 kg/MWh.IntroductionOne of the most distinctive advantages of DC open-arc smelting is the ability to process fine raw materials without any major issues with regard to the operability of the furnace, metal recovery, and metal quality. This has been demonstrated in Mintek’s DC arc pilot plant facilities over a period of about three decades (Curr et al., 1983). The materials that have been processed include laterite (Kotze, 2002), chromite fines (Curr et al., 1983), manganese fines (Lagendijk et al., 2010), PGM concentrates (Shaw et al., 2013), electric arc furnace (EAF) dust (Denton et al., 2005; Abdellatif, 2002a) and stainless steel (SS) dust (Denton et al., 2005; Abdellatif, 2002a; Goff and Denton, 2004), and petroleum fly ash (Abdellatif, 2002b). The top particle size of such materials can vary from a few millimetres (e.g. laterite) to micrometres (EAF and SS dust). Dusting, whether due to physical carryover of feed or to the arc side reactions, has been proven to be a non-issue. As such, the applications of DC open-arc furnaces have the potential to be extended to other raw materials such as particulate nickel oxide, which has a particle size much less than 100 µm.Nickel oxide is typically produced from laterite ore by sulphuric acid leaching, purification, and precipitation as basic nickel carbonate (BNC) (Rhamdhani, Jak, and Hayes, 2008) or as mixed hydroxide precipitate (MHP) (Mackenzie, Virnig, and Feather, 2006), and finally calcining at moderate temperatures (800–1200°C). The NiO product is very fine, with an average particle size in the range of 10–20 µm and a NiO content of more than 99%."
Citation
APA:
(2015) Smelting of Calcined Basic Nickel Carbonate Concentrate in a 200 kW Dc Arc FurnaceMLA: Smelting of Calcined Basic Nickel Carbonate Concentrate in a 200 kW Dc Arc Furnace. The Southern African Institute of Mining and Metallurgy, 2015.