Some Problems In Unstable Plastic Flow Under Biaxial Tension

The American Institute of Mining, Metallurgical, and Petroleum Engineers
W. T. Lankford Edward Saibel
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
12
File Size:
524 KB
Publication Date:
Jan 1, 1947

Abstract

DURING the course of an investigation of the plastic flow of aluminum aircraft sheet under combined loads, several problems arose in which analyses of the conditions leading to unstable plastic flow were needed. In order to provide these analyses, and in the hope of attaining a better understanding of the general problem of unstable plastic flow, the present study was undertaken. It is well known that unstable plastic flow is associated with a form of mechanical instability frequently observed during the plastic deformation of ductile metals. This instability is characterized by the fact that, at its onset, plastic straining will proceed at a constant magnitude of the externally applied forces. It is further typical that the resulting unstable flow is generally accompanied by the formation of a neck, a local bulging, or some other form of heterogeneous deformation. Perhaps the most familiar example of unstable plastic flow to the metallurgist is the formation of the neck in the ordinary tension test. It is well known that in this test most metals exhibit a maximum in the externally applied load, followed by the process commonly referred to. as "necking down." Instability in the simple tension test has been frequently discussed and numerous investigators 1,2.3,12 have derived the criterion for instability in terms of a critical rate of strain hardening. It is the purpose of the present study to extend the criterion for unstable flow to the more general case where the body undergoing flow is subjected to combined loads. It is hoped that the problems considered will provide a more consistent picture of the general features of this important form of mechanical instability. The most practical implications of instability in plastic flow arise in connection with sheet metal forming operations. In the formation of a great many sheet metal parts, the deformations are produced primarily by stretching. If the conditions which lead to unstable flow are fulfilled in such a formation, and if the resultant instability leads to a pronounced localization of flow, then the useful limit of ductility of the material will have been reached. It is also essential that the effects of instability be taken into consideration in any study of the plastic flow and rupture of metals under combined stresses. In general, when unstable plastic flow is initiated, straining becomes localized, the geometry of the test specimen changes, and the state of stress in that portion of the specimen undergoing plastic flow is no longer under external control. In many past studies of the effects of combined stresses on flow and rupture, account has not been taken of the fact that, although a given test may be started under constant
Citation

APA: W. T. Lankford Edward Saibel  (1947)  Some Problems In Unstable Plastic Flow Under Biaxial Tension

MLA: W. T. Lankford Edward Saibel Some Problems In Unstable Plastic Flow Under Biaxial Tension. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1947.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account