Technical Notes - Effect of Quick-Freezing vs Saturation of Oil Well Cores

The American Institute of Mining, Metallurgical, and Petroleum Engineers
Frank C. Kelton
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
3
File Size:
227 KB
Publication Date:
Jan 1, 1953

Abstract

It is perhaps not widely realized that extraction and saturation processes carried out on oil well core samples alter the properties of these samples to varying degrees. On the other hand it is felt by some that quick-freezing of core samples increases their permeability and porosity significantly. Accordingly, laboratory tests were carried out on 49 pairs of horizontally adjacent samples in order to differentiate between the effect of quick-freezing per se on permeability and porosity of the samples, as distinguished from the effect of the identical saturation treatment on permeability and porosity of the companion samples. Also, additional field data were obtained on comparison of frozen vs unfrozen companion samples. LABORATORY INVESTIGATION OF FREEZING us SATURATION EFFECTS Procedure The samples used in these tests were two-cm cubes cut in horizontally adjacent pairs from cores from eight Gulf Coast and Mid-Continent wells, which cores had not previously been frozen. These samples were extracted with carbon tetrachloride, dried, and air permeabilities run in the conventional manner. They were then evacuated and saturated with brine of 25,000 ppm sodium chloride content, and porosities determined by gain in weight. The samples were partially desaturated by evaporation down to an average brine saturation of 68 per cent. One sample from each pair was quick-frozen by covering with dry ice after wrapping in a single layer of paper, and allowed to remain frozen for about two hours; the companion sample from each pair was not frozen. After thawing the frozen sample, all samples were immersed in tap water overnight in order to leach out most of the brine. Air permeabilities were re-run, and the samples were again saturated with brine to determine a second porosity value. For purposes of averaging of data, the samples were grouped according to four permeability ranges, from 0 to 10, 10 to 100, 100 to 1,000, and 1,000 to 3,840 md. Average permeability and porosity changes for the frozen vs the unfrozen adjacent samples are shown in Table 1. Discussion As may be seen from Table 1, the averages of the per cent permeability increases for the quick-frozen samples ranged from 3.8 to 12.9 per cent among the four permeability groups. The average changes among the four groups of unfrozen companion samples ranged from a decrease of 0.2 per cent to an increase of 9.3 per cent. There was no particular correlation of these changes with magnitude of permeability; however, the increase for each group of frozen samples paralleled the increase for the corresponding unfrozen samples. The differences between the two sets of values are believed to be a valid indication of the effect of the quick-freezing in itself, since the treatment of the two samples in each pair was identical except for freezing. The permeability changes which are strictly the result of the quick-freezing are shown in the sixth column of Table 1. These range from a decrease of 0.9 per cent to an increase of 4.0 per cent; the overall weighted average is 1.2 per cent, as compared to an average increase of 6.8 per cent caused by the saturation treatment of the samples not frozen. The average porosity changes are in general smaller than the changes in permeability, and range from a decrease of 2.3 per cent to an increase of 3.3 per cent. The overall weighted average change ascribed to the quick-freezing is 1.0 per cent of porosity. Many factors can contribute to the changes in permeability and porosity observed when subjecting cores to the simple processes used in these tests. Such are: hydration and swelling of clay, adsorption of ions, changes in surface structure and wettability, expansion and compression effects due to ice formation, shrinking and cracking, leaching of salts and colloids, displacement of particles resulting in either blocking or enlarging of pore openings. Whatever particular mechanisms are involved. however, it is apparent not only from this study but also from other investigations in the literature' not directly concerned with quick-freezing, that the effects produced by commonly used extraction, saturation and drying techniques may be of considerable magnitude The results of this study indicate that for the particular samples and techniques used, such effects are of the order of five to six times the effect of quick-freezing. insofar as changes in permeability are concerned. It may be argued that these samples might not include extremely shaly material where the effect of freezing upon permeability may be much greater. However, had such material been available for these tests, it would undoubtedly have been very susceptible also to alteration by the extraction and saturation treatment used. To investigate this point further, the individual sample data were re-grouped according to the magnitude of the average per cent permeability increases for the pairs of samples, irrespective of permeability. The results
Citation

APA: Frank C. Kelton  (1953)  Technical Notes - Effect of Quick-Freezing vs Saturation of Oil Well Cores

MLA: Frank C. Kelton Technical Notes - Effect of Quick-Freezing vs Saturation of Oil Well Cores. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1953.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account