Technical Notes - Origin of the Cube Texture in Face-Centered Cubic Metals

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 2
- File Size:
- 194 KB
- Publication Date:
- Jan 1, 1952
Abstract
THE occurrence of the (100) [lOO] or "cube" texture upon annealing of cold-rolled copper has been much investigated.' The conditions favorable for its formation were found to be a high final annealing temperaturez or long annealing time," a high reduction of area in cold rolling prior to the final anneal,' and a small penultimate grain size." The effects of penultimate grain size and of rolling reduction were found by Cook and Richards4 to be interrelated in such a way that any combination of them giving lower than a certain value of the final average thickness of the grains in the rolled material leads to a fairly complete cube texture with a given final annealing time and temperature. Also, according to the same authors, at a higher final annealing temperature a larger average rolled grain thickness, i.e., a lower final rolling reduction, is sufficient than at a lower temperature. These somewhat involved conditions can be understood readily on the basis of recent results obtained at this laboratory. Hsun Hu was able to show recently by means of quantitative pole figure determinations that the rolling texture of tough pitch copper, which is almost identical with that of 2s aluminum: may be described roughly as a scatter around four symmetrical "ideal" orientations not very far from (123) [112]. In the case of aluminum, annealing leads to retain-ment of the rolling texture with some decrease of the scatter around the four "ideal" orientations, and to the appearance of a new texture component, namely the cube texture." A microscopic technique, revealing grain orientations by means of oxide film and polarized light, showed that the retainment of the rolling texture is achieved through two different mechanisms operating simultaneously, namely "re-crystallization in situ," and the formation of strain-free grains in orientations different from their local surroundings, but identical with that of another component of the rolling texture. Thus, a local area in the rolled material, having approximately the orientation of one of the four "ideal" components of the texture, partly retains its orientation during annealing, while recovering from its cold-worked condition, and it is partially absorbed at the same time by invading strain-free grains of an orientation approximately corresponding to that of another "ideal" texture component. The reorientation here, as well as in the formation of the strain-free grains of "cube" orientation, may be described as a [Ill] rotation of about 40°, see Fig. 1 of ref. 6. The preferential growth of grains in such orientations is a result of the high mobility of grain boundaries corresponding to this relative orientation.' " It appears very likely that in copper the mechanism of the structural changes during annealing is similar to that observed in aluminum (except for the much greater frequency of formation of annealing twins in copper). In both metals the new grains of cube orientation have a great advantage over the new grains with orientations close to one of the four components of the rolling texture. This advantage stems from their symmetrical orientation with respect to all four retained rolling texture components of the matrix; they are oriented favorably for growth at the expense of all of these four orientations. As a result, the growth of the "cube grains" is favored over the growth of the others, as soon as the new grains have grown large enough to be in contact with portions of the matrix containing elements of more than one, and preferably of all four component textures. It is clear that this critical size is smaller and, therefore, attained earlier in the annealing process if the structural units, such as grains and kink bands, representing the four matrix orientations are smaller, i. e., if the average thickness of the rolled grains is smaller. Hence, for a given annealing time and temperature, a smaller penultimate grain size and a higher rolling reduction both tend to increase that fraction of the annealing period during which the above condition is satisfied. Consequently, the percentage volume of material assuming the cube orientation increases. The same is true also for increasing time and temperature of annealing when the penultimate grain size and the final rolling reduction are constant, since the average size attained by the new grains during annealing increases with the annealing time and temperature. For the same reason, at higher annealing temperatures a given volume percentage of cube texture can be obtained with larger rolled grain thickness (larger penultimate grain size, or smaller rolling reduction) than at lower annealing temperatures. The well-known conspicuous sharpness of the cube texture may be interpreted as a result of the fact that selective growth of only those grains is favored that have an orientation closely symmetrical with respect to all four components of the deformation texture and exhibit, therefore, a high boundary mobility in contact with each. The effect of alloying elements in suppressing the cube texture, as described by Dahl and Pawlek,' appears to be associated with a change in the rolling texture. For face-centered cubic metals, such as copper, which do exhibit the cube texture upon annealing, the rolling texture is always of the type described above, i. e., scattered around four "ideal orientations" of approximately (123) [112]. The addition of certain alloying elements, such as about 5 pct Zn or 0.05 pct P in copper, has the as yet unexplained effect of changing the rolling texture into the (110) 11121 type. This texture consists of two fairly sharply developed, twin related components. In such cases, as in 70-30 brass and in silver, the annealing texture again is related to the rolling texture by a [lll] rotation of about 30°, however, because of the different rolling texture to start from, it has no cube texture component. At higher temperatures, both in brassm and in silver," grain growth leads to a further change in texture: A [lll] rotation of the same amount, but in reversed direction, back to the original rolling texture.
Citation
APA:
(1952) Technical Notes - Origin of the Cube Texture in Face-Centered Cubic MetalsMLA: Technical Notes - Origin of the Cube Texture in Face-Centered Cubic Metals. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1952.