Technical Notes - Relationships Between the Mud Resistively, Mud Filtrate Resistivity, and the mud Cake Resistivity of Oil Emulsion Mud Systems

The American Institute of Mining, Metallurgical, and Petroleum Engineers
Norman Lamont
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
2
File Size:
146 KB
Publication Date:
Jan 1, 1958

Abstract

The evaluation of certain reser-voir properties, such as porosity and fluid saturation, from electrical well surveys has been widely accepted in petroleum engineering. Various investigators have established relationships between these properties and certain parameters which affect the response of the electrical log. Among these are the resistivities of the mud, its filtrate, and its filter cake. In 1949, Patnode1 established a relationship between the resistivities of the mud and filtrate. The well logging service companies have contributed relationships for the mud-mud cake resistivities2,3 These have been valuable since it was the practice to measure only resistivity of mud at the well site. During the mid-1940's the industry began drilling wells with oil-emulsion drilling fluids. These were conventional aqueous muds with a dispersed oil phase. Since 1950, oil-emulsion muds have been used on an increasing number of wells each year. However, the practice of measuring only the resistivity of the mud at the well site has continued, and the mud filtrate and mud cake resistivities have been determined by the above-mentioned relationships. Service companies are now equipped to measure all three resistivities at the well site. An investigation was conducted on the resistivities of oil-emulsion muds, mud filtrates, and mud cakes to determine if these values conformed to the relationships for aqueous muds. TYPES OF MUDS Fifty-one oil-emulsion mud samples were prepared in the laboratory following a standard manual' published by a leading mud company. The diesel oil in the samples varied from 5 to 50 per cent, the majority of the samples being in the 10 per cent region. The basic aqueous mud types which were converted to oil-emulsion muds were commercial clay and bentonite muds, low pH and high pH, caustic-quebracho treated muds, and lime treated muds. The emulsions were stabilized by dispersed solids, lignins, lignosulfo-nates, sodium carboxymethyl cellulose, or sulfonated petrolatum. It is worthy of note that after a quiescent period of two weeks at room temperature all samples, regardless of emulsifying agent, remained stable. The make-up water for the muds was from the laboratory tap. Resistivities were varied by the addition of table salt to the water. A range of mud resistivities from 0.44 to 3.9 ohm-m was obtained in this way. Twenty-three field muds were tested. These covered the same range of mud types as did laboratory muds. Oil provinces of the Gulf Coast, South Texas, West Texas, Oklahoma, Montana, and Canada were represented. MUD TEST PROCEDURE Each mud was tested for density, viscosity, pH, and filter loss by standard testing techniques. The resistivity measurements were obtained with a Schlumberger EMT meter. This meter required small volumes of sample, e.g., 2 mm. Filtrate was obtained from a Standard Baroid fil-ter press at the end of a 30-minute test. The filter cake from the same test was used for cake resistivity measurements. Mud, filtrate, and cake samples were heated to 100" F in a constant temperature water bath prior to measurement of resistivities. RESULTS The relation between mud resistivity (Rm) and mud filtrate resistivity (Rmf) is shown in Fig. 1. The solid line represents an average for the data. The equation of this line is Rmf =0.876 (Rm) 1.075 . . (1) Arbitrary limits, indicated by the dashed curves, have been set. The majority of the data falls within these limits, but some points do lie outside the limits. The approximate equation Rmt = 0.88 Rm , . . . . (2) will give satisfactory results within these limits. The data on mud cake resistivity Rmc is shown in Fig. 2. The solid line is an average for the data. The equation for the line is Rmc = 1.306 (Rm)0.88 The dashed lines are arbitrary limits on the data. Within these limits, Eq. 3 may be simplified to Rmc = 1.31 Rm . . . . (4) DISCUSSION The limiting curves in Figs. 1 and 2 represent maximum deviations of ±25 per cent. Thus the use of the average curves can introduce considerable error. There is no substitute for accurate measurements of mud, mud cake, and mud filtrate resistivities at the well site. The mud sample tested should be representative of the mud opposite the formation being logged. The average mud filtrate resistivity curve of Fig. 1 is reproduced in Fig. 3 with two curves which have been published for clay-base aqueous muds2,3. The latter curves were determined from average values of a large number of drilling fluids. The three curves have essentially the same slope and the differences between them are from 7 to 22 per cent. Comparison is made only to illustrate the possibility of error
Citation

APA: Norman Lamont  (1958)  Technical Notes - Relationships Between the Mud Resistively, Mud Filtrate Resistivity, and the mud Cake Resistivity of Oil Emulsion Mud Systems

MLA: Norman Lamont Technical Notes - Relationships Between the Mud Resistively, Mud Filtrate Resistivity, and the mud Cake Resistivity of Oil Emulsion Mud Systems. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1958.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account