Technical Notes - Some Fundamental Properties of Rock Noises

The American Institute of Mining, Metallurgical, and Petroleum Engineers
Wilson Blake Wilbur I. Duvall
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
3
File Size:
552 KB
Publication Date:
Jan 1, 1970

Abstract

The microseismic method of detecting instability in underground mines was developed by the U.S. Bureau of Mines (USBM) in the early 1940's. ,3 The method relies on the fact that as rock is stressed, strain energy is stored in the rock. Accompanying the buildup of strain energy are small-scale displacement adjustments that release small amounts of seismic and acoustic energy. These small-scale disturbances, which can be detected with the aid of special geophysical equipment, are called micro-seisims or self-gene rated rock noises. It was further determined that as failure of rock is approached, the rate at which rock noises are generated increases. Thus, by monitoring a rock structure at intervals and plotting rock noise rates vs. time, a semi quantitative estimate of the behavior and stability of the structure can be made. Since sufficient use of the microseismic method is still being made by various mining and construction companies, USBM undertook a comprehensive review of the method and a study of the fundamental properties of rock noises. As all prior work on rock noises has been done with resonant-type geophones, which prevented any analysis of their vibration records, it was necessary to develop the instrumentation and field techniques in order that their properties could be investigated, such as their frequency spectrum and absorption characteristics, and to determine if both P and S-waves are generated by a rock noise. The aim of this program is the design of microseismic instrumentation which can be better utilized as an engineering tool than the presently available microseismic equipment. This new design, based on the basic properties of rock noises, should allow better utilization of these phenomena in the study and location of zones of incipient instability in both underground and open-pit mines. EXPERIMENTAL PROCEDURE To study the waveform of rock noises, it was necessary to develop a microseismic system with a broad bandwidth. To achieve high sensitivity and broad frequency response, commercial ceramic accelerometers were used. The present broad-band microseismic system consists of accelerometers as geophones, low-noise preamplifiers, high-gain amplifiers, and an FM magnetic tape recorder. This seven-channel system has a flat frequency response from 20 to 10,000 Hz, a noise level of less than 2.0 kv, and a dynamic range (including manual set attenuation) of greater than 100 db; it can detect signals with acceleration levels as low as 2 ug. The entire system is solid state and hence battery operated and portable (Fig. 1) Analysis procedures consist of playing back the 30-in-per-sec (ips) magnetic tape recordings at 1 7/8 ips to expand the time scale of a recorded rock noise event and then recording this on a high-speed direct-writing oscillograph. The oscilIographic records are then digitized and run through Fourier integral analysis computer programs to determine the frequency spectrum of a rock noise event. The oscillographic records are also examined visually to determine if both P and S-waves can be recognized in a rock noise waveform. Broad-band microseismic recordings have been made at field sites in a wide variety of rock types and in both underground and open-pit mines. Sites include the Kimbley Pit, Ruth, Nev.; the Galena Mine, Wallace, Idaho; the Colony Development Mine. Grand Valley, Colo.; the Cliff Shaft Mine, Ishpeming, Mich; and the White Pine Mine, White Pine, Mich. DATA AND DISCUSSION Analyses of the recorded data have shown that rock noise frequencies are very broad. Fig. 2 and 3 show typical rock noise events and their frequency spectrums. In addition, it is evident from these figures that the wave form of a rock noise is very complex. The wide frequency variation, 50 to 7500 Hz, is due to many variables; the effect of travel distance is the only one examined in this study. The higher frequency components of the wave are rapidly absorbed with distance or increasing travel time. Fig. 4 shows the change in waveform resulting from an additional travel distance of 195 ft. From these data, it is apparent that a resonant-type microseismic geophone cannot respond to all frequencies generated by a rock noise, and in spite of the fact that the tuned geophone is more sensitive at resonance, a geophone with less sensitivity but broader band width is much more effective in detecting rock noises. In addition, a study of broad-band microseismic records shows that both P and S-wave arrivals are easily detected, as shown in Fig. 5. All records analyzed to date show that most of the energy is in the S portion of the wave; hence, microseismic geophones should be well
Citation

APA: Wilson Blake Wilbur I. Duvall  (1970)  Technical Notes - Some Fundamental Properties of Rock Noises

MLA: Wilson Blake Wilbur I. Duvall Technical Notes - Some Fundamental Properties of Rock Noises. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1970.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account