Technical Papers and Notes - Institute of Metals Division - Steady-State Diffusion in Substitutional Solid Solutions

The American Institute of Mining, Metallurgical, and Petroleum Engineers
A. S. Yue A. G. Guy
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
6
File Size:
1591 KB
Publication Date:
Jan 1, 1959

Abstract

A study was made of the effects of a prolonged flux of zinc atoms through the a solid solution of zinc in copper. The experimental arrangement consisted essentially of a copper disk about 0.01 in. thick, at one of whose surfaces a gaseous atmosphere containing zinc atoms was maintained, and at the other surface a gaseous atmosphere with a minimum of zinc atoms was maintained. During prolonged theothersurfaceexposure at high temperatures the zinc content of the copper disk gradually built up to the steady-state concentration distribution and then remained at this value. The concentration-distribution curves for various conditions were determined by chemical analyses. The results showed that the condition of steady-state diffusion was achieved. The diffusion coefficients calculated from the experimental data, although not of high precision, agreed with the values obtained by other workers using unsteady-state methods. Relatively slight porosity developed in the specimens in the course of diffusion. A LTHOUGH most diffusion studies have been made under unsteady-state conditions, it is known' that the steady-state method is often superior with respect to the directness and accuracy of interpretation of the data. Steady-state diffusion of gases through metal diaphragms is well known. Also, Harris' and Smith" have used the steady-state method in studying the diffusion of carbon in aus-tenite. The accepted mechanism in this system involves the motion of the interstitial carbon atoms in the rigid framework of the lattice of iron atoms. Thus, there is little difficulty in visualizing the steady flow of the small carbon atoms through the austenite. The situation in substitutional diffusion is quite different. Here the atoms are comparable in size, and it is not evident how a steady flow of one of the atoms through the solid solution might be achieved. At the time the present research was started, it was known that a previous exploratory attempt to produce steady-state diffusion in a substitutional alloy, the Au-Ag system,' had been unsuccessful and had indicated that perhaps there were basic difficulties that could not be ovei-come. Therefore, the present research began as a study of the effect of a prolonged flux of metal atoms through a substitutional solid solution. Eventua.lly, it was possible to produce actual steady-state diffusion in the system chosen for study, the a Cu-Zn alloys. Experimental Procedure The aim in the experiments was to maintain a high zinc content, about 30 pet, at one surface of a copper sheet, and to maintain a low zinc content, near 0 pet, at the opposite surface. The zinc would then diffuse into and through the copper, first building up to the steady-state concentration distribution and then maintaining this distribution. The three types of specimens that were used are shown in Fig. 1. In type A specimens the copper disk through which diffusion occurred was welded to the top of a cylindrical molybdenum tube, the bottom of which also was sealed by welding. At the diffusion temperature the brass chips in the molybdenum container were the source of the zinc vapor which maintained the lower surface of the copper disk at 30 pet Zn. The upper surface was maintained at 0 pet Zn by the vacuum in which type A, and also type B, specimens were diffused. Since the molybdenum container was impervious to zinc vapor, it was intended that the only path of escape for the vapor from the brass chips would be through the thin copper diffusion disk. However, it was found that small leaks often developed at the welded joints during the diffusion treatment, and in most specimens some of the zinc was lost in this manner. Although even small losses of this kind were a serious handicap in attempting to determine the flux through the disk, they did not prevent the maintenance of satisfactory boundary conditions for the attainment of the steady-state condition. Type B specimens differed from type A in having a weight of about 300 g supported on the copper disk by 15 to 20 short quartz rods. This change was made when it was observed that the copper disk was being bowed upward by the difference in the pressures acting on its two surfaces. Since the grain-boundary cracking which occurred in the bowed specimens could be attributed largely to the accompanying creep,3 it was desirable to minimize this effect. The counterweight was effective in significantly decreasing both bowing of the disk and cracking at grain boundaries. Type C specimens differed considerably from the others in that the low-zinc atmosphere at one sur-
Citation

APA: A. S. Yue A. G. Guy  (1959)  Technical Papers and Notes - Institute of Metals Division - Steady-State Diffusion in Substitutional Solid Solutions

MLA: A. S. Yue A. G. Guy Technical Papers and Notes - Institute of Metals Division - Steady-State Diffusion in Substitutional Solid Solutions. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1959.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account