Technical Papers and Notes - Institute of Metals Division - The Silver-Zirconium System

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 6
- File Size:
- 1556 KB
- Publication Date:
- Jan 1, 1959
Abstract
A detailed investigation was made of the phase diagram of silver-zirconium, particularly in the region 0 to 36 at. pct Ag. The system was found to be characterized by two intermediate phases Zr2Ag and ZrAg and a eutectoid reaction in which the -zirconium solid solution decomposes into a-zirconium and Zr2Ag. It was found that impurities in the range 0.05 pct from the iodide-type zirconium were sufficient to introduce deviations from binary behavior, and that with partial removal of these impurities an increase in the a-phase solid solubility limit from 0.1 to 1.1 at. pct Ag was observed. The phase diagram of the silver-zirconium system is of interest as an example of alloying a transition metal from the left side of the Periodic Table with a Group IB element. Silver would normally act as a univalent metal, its filled 4d-shell remaining undisturbed during the alloying. However, there is a possibility that some of the 4d electrons might transfer to the zirconium. An insight into such a question can occasionally be obtained by comparison of phase diagrams. The silver-zirconium system forms part of a more complete review of various solutes in zirconium in which these valency effects were studied.' Earlier work on the silver-zirconium system was done by Raub and Enge1,2 who investigated the silver-rich alloys. After the start of the present experhents, work on this system was reported by Kemper3 and by Karlsson4 which for the most part agrees with the phase diagram presented here. EXPERIMENTAL PROCEDURE The alloys were prepared by arc casting on a water-cooled, copper hearth with a tungsten electrode and in a pure argon atmosphere. Uniform solute composition was attained by multiple melting on alternate sides of the same ingot. Progressive improvements in the vacuum conditions inside the apparatus during the course of the experiments reduced the Vickers hardness increase of the pure zirconium control ingot from 10 to 20 points, observed initially, to negligible amounts at the end of the experiments. Such hardness changes in zirconium are a well known indication of purity. For example, -01 wt pct additions of oxygen, nitrogen, and carbon increase hardness by 6, 10, and 3 VPN respectively. '9' Further verification that the final casting technique did not add a significant quantity of impurities was obtained when pure zirconium was arc cast and then isothermally annealed in the vicinity of the allotropic transition. The transition was always observed to take place over the same temperature range as in the original crystal bar. The alloy ingots were annealed in sealed silica capsules for times and temperatures which varied between 1 day at 1300°C and 60 days at 700°C. The best method found to prevent the reaction of the zirconium with the silica was foil wrapping of molybdenum or tantalum. With this method, samples of pure zirconium were found to be unchanged in hardness after annealing for 3 days at 1200°C. In most of the experiments the protection of these foils was supplemented by an additional layer of zirconium foil inside the molybdenum or tantalum foil. The alloys, foil, and the capsule were outgassed at pressures in the range 10 to l0-7mm Hg in the temperature range 800" to 1100°C before each anneal in order to remove hydrogen and other impurities, and to provide a suitable container for the high purity, inert atmosphere, which is essential in the annealing of zirconium. The temperature measurements were made with Pt/Pt + 10 pct Rh thermocouples calibrated frequently during the experiments against the melting points of zinc, aluminum, silver, gold, and palladium. For the longer anneals the sum of various temperature errors was generally well within ± 2°C. For short-time anneals and during thermal analysis the overall temperature error is considered to be within ± 0.5°C. The compositions of the alloys from the quenching experiments were determined by chemical analysis at Johnson Matthey and Company, Ltd., under the direction of Mr. F. M. Lever. The actual metallo-graphic samples were individually analyzed in every case, and prior to the analyses two or more sides of each specimen were examined to insure that the specimen was not segregated. The sum of the solute and solvent analyses was in each case within the range 99.9 to 100.1 pct. In the course of the experiments, minor impurities in the range 0 to 500 ppm were found to have significant effects on the zirconium-rich portion of the phase diagram. Similar effects had been encountered previously in other zirconium phase-
Citation
APA:
(1959) Technical Papers and Notes - Institute of Metals Division - The Silver-Zirconium SystemMLA: Technical Papers and Notes - Institute of Metals Division - The Silver-Zirconium System. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1959.