Technical Papers and Notes - Institute of Metals Division - The System Mercury-Thorium

The American Institute of Mining, Metallurgical, and Petroleum Engineers
R. F. Domagala R. P. Elliott W. Rostoker
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
3
File Size:
682 KB
Publication Date:
Jan 1, 1959

Abstract

The phase equilibria of the Hg-Th system over the composition range 0-100 pct Th and temperatures up to 1000°C have been studied for a small-volume, closed system. The solubility of Th in liquid Hg is about 5 pct at 300°C and decreases sharply with decreasing temperature. Two intermediate phases occur, Hg3 Th and HgTh. The structures of these are hexagonal (nonideally close-packed) and face-centered cubic, respectively. The HgTh phase decomposes eutectoidally at 400°-500°C. The solubility of Hg in solid thorium seems to be negligible. AFULL-phase diagram for this system would have to be defined on temperature-composition-pressure co-ordinates. This paper describes the pseudo phase diagram of a closed system, that is, where the alloy enclosed in a small volume equilibrates with a vapor pressure of mercury dictated by composition and temperature. Because of the experimental difficulties in studying a system of this nature, many of the phase relations can only be sketched. Alloy Preparation Alloys over the full range of composition were made from triple distilled mercury and one of two grades of thorium. For the bulk of the work, a calcium-reduced metal in sintered pellet form of reported 99+ pct total thorium content was used. Arc-melted specimens of this thorium gave a hardness of 135 VPN. The microstructure showed small primary dendrites of ThO2. A number of alloy compositions were made with a high-purity, iodide-decomposition thorium metal. The are-melted hardness of a button of this material was 35 VPN. Although the microstructure of the arc-melted specimens showed no dendrites of ThO2, there was definite evidence of an unidentified phase enveloping the grain bound-aries. There were no distinguishable differences between the constitution of alloys made with the two grades of thorium metal. Under normal conditions thorium is not wetted by liquid mercury. The film of ThO2 on all thorium metal cannot be penetrated by either liquid or vaporous mercury. It was therefore necessary to comminute thorium in the presence of mercury under such conditions that oxide films could not reform on the newly exposed metal surfaces. This was accomplished by the use of a high-speed, carbide-tipped rotary cutter incorporated in a chamber purged with argon and connected at the bottom to a demountable Vycor bulb containing a weighed amount of mercury. This experimental device is fully described in a separate paper.1 Alloy compositions were calculated by weighing the empty bulb, the bulb containing the mercury, and the bulb containing the mercury and the thorium chips. Many alloys were analyzed chemically for thorium and/or mercury after subsequent homogenization; the agreement between analyzed and calculated compositions was invariably very close. Bulbs containing the requisite amounts of mercury and fine thorium chips were clamped off, removed to a sealing unit, evacuated and sealed. Amalgamation under these conditions proceeded rapidly even at room temperature. To insure homogeneity, the specimens were annealed to 300-400°C. Alloys containing less than 30 pct Th remained pasty after all treatments, indicating an equilibrium condition of liquid plus solid. Alloys with more than 30 pct Th were transformed into a dark powdery product. These latter specimens were annealed for times of up to 1 week to complete interdiffusion. Many of the alloy compositions are pyrophoric. On exposure to air they oxidize with considerable evolution of heat to a mixture of ThO2 and free mercury. It was mandatory that alloy specimens be handled in a "dry box" purged thoroughly with argon. All X-ray diffraction specimens were powdered, screened, and sealed in capillary tubes within the dry box. Experimental Procedures Thermal analysis experiments, useful only in the mercury-rich region of the system, were conducted with the alloys in their original containers. A reentrant thermocouple well formed an integral part of the bulb. These bulbs were heated in a silicone oil bath and cooled in a dry ice-acetone mixture. The rates of heating and cooling were slowed by immersing the specimen bulb in a larger tube containing silicone oil. This provided a suitable thermal lag. In all tests, pure mercury was run as a basic standard. While the invariant reaction at about the melting point of mercury was detected by thermal analysis, the heat effect at the liquidus was not sufficient to produce an inflection in the cooling curve. It was necessary to determine the liquidus temperatures at the mercury-rich end of the system by "breaks" in electrical reslstivity versus temperature curves for individual alloys. The apparatus for this purpose consisted of a pyrex tube about 2 in. diam and 12 in
Citation

APA: R. F. Domagala R. P. Elliott W. Rostoker  (1959)  Technical Papers and Notes - Institute of Metals Division - The System Mercury-Thorium

MLA: R. F. Domagala R. P. Elliott W. Rostoker Technical Papers and Notes - Institute of Metals Division - The System Mercury-Thorium. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1959.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account