Technical Papers and Notes - Iron and Steel Division - A Boron Steel for Deep Drawing

The American Institute of Mining, Metallurgical, and Petroleum Engineers
L. R. Shoenberger
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
4
File Size:
1005 KB
Publication Date:
Jan 1, 1959

Abstract

Boron has been used to produce nonaging low-carbon sheet steel. Retention of the necessary minimum amount of about 0.006 pet partially killed the steel. Amounts exceeding about 0.012 pet increased the degree of deoxidotion, piping tendencies, and possibility of hot tearing in primary rolling. Semikilled practice resulted in good ingot yields and satisfactory surface quality. Aluminum added with the boron provided a protective de-oxidizer. Good drawobility was indicated by performances of the steel in a limited number of deep-drawing trials. Some problems with hot-tearing and boron-analysis procedures were overcome. Metal lographically, the boron semikilled steels revealed some structures not usually found in plain low-carbon steels. IN 1943 Low and Gensamer1 reported that strain aging, which hardens and embrittles ordinary low-carbon rimmed steel, was due to nitrogen and carbon, and that oxygen played a relatively unimportant role. Since then, many investigators have substantiated their findings and indicated that nitrogen is particularly potent. Commercially, today's most widely produced non-aging sheet steels for deep drawing are either aluminum killed or vanadium rimmed types. The difference in deoxidation practice, alone, is evidence that oxygen is apparently not an important consideration in control of strain aging. The fact that nitrogen is important is apparent in the consideration that has been given, knowingly or unknowingly, to the amount combined with aluminum and vanadium. Patents were granted to Hayes and Griffis2 for the processing of aluminum-killed steel, and to Epstein" for the manufacture of vanadium rimmed material. Certain prescribed steps in producing these steels can be correlated with the formation of the respective nitrides within certain temperature ranges below the usual hot-finishing temperatures. The potential nonaging properties of either type can be reduced or suppressed by cooling too rapidly to permit the aluminum or vanadium to combine with nitrogen. Subsequent suberitical annealing of the cold-rolled strip, however, normally forms the nitrides and produces the resistance to strain aging. Titanium-killed nonaging steel, described by Comstock,1 forms a nitride in the molten state and is essentially nonaging throughout its processing. Zirconium-killed steel, which was investigated briefly by the author,* appeared to have similar nitride- forming characteristics. It is known" that chromium can produce nonaging rimmed steel, but relatively little is known of the potentialities of some of the other nitride-forming elements such as boron, silicon, columbium, and cerium. In attempting to develop a new nonaging cold-rolled sheet steel with good drawability, the following factors were considered pertinent. Such a steel would necessarily have a low carbon content and therefore have a relatively high degree of oxidation when made in a basic open-hearth furnace. If the denitriding element were also a deoxidizer, a part of the addition would be lost as oxide. The degree of deoxidation would determine whether the steel is rimmed, semikilled or killed, and also could be expected to have an important bearing on ingot yields and ultimate surface quality. Assuming that the pattern for the production of cold-rolled sheets would not be changed to any great extent, the nitride must form in the molten steel, in hot rolling, in subsequent cooling, or in annealing. The nitride, once formed, should resist dissociation and be stable in the final product. Usually an excess of the nitride-forming element is required to combine with sufficient nitrogen. If the element used is a strong ferrite strengthener, a small excess may markedly decrease drawability. With aluminum and vanadium, about 0.03 to 0.05 pct in the steel is preferred. Epstein has said" that about 0.30 pct chromium is required. Titanium nonaging steels are hard unless a sufficient amount (about 0.30 pct) is added also to combine with the carbon. The cost of the necessary amounts of these latter two elements discourages commercial acceptance. Silicon was considered as a possible nitride former, but since amounts up to 0.10 pct in rimmed and semikilled steels do not induce marked resistance to strain aging, larger amounts are apparently required, which would tend to harden and strengthen the ferrite. Of the other elements mentioned, all but boron are expensive heavy-metal elements. Stoichi-ometrically, almost an equal weight of boron would be required to combine with the nitrogen—-ordinarily about 0.003 to 0.006 pct in scrap-practice open-hearth steels. Boron is a slightly stronger deoxidizer than carbon but is less powerful than zirconium, aluminum, or titanium. Thus a rimmed-steel practice might be possible. There is much in the technical literature concerning the hardenability effects of minute amounts of boron in killed steels but very little about its behavior in low-carbon material—particularly as a ferrite strengthener. The available data indicated a need for better information concerning the effects of boron in low-carbon strip steels. Experimental Work Development of a Boron-Treated Nonaging Strip Steel—Initial attempts to produce a boron-rimmed strip steel employed 3-ton basic open-hearth heats which could be teemed into molds large enough to sustain a normal rimming action. Boron as ferro-boron was added to the ladle in small amounts because of the reported hot-short character of aluminum-killed heat-treating grades containing more than about 0.005 pct boron. Actually, the amounts used, i.e., 1/8 and 1/4 lb per ton, would be large for
Citation

APA: L. R. Shoenberger  (1959)  Technical Papers and Notes - Iron and Steel Division - A Boron Steel for Deep Drawing

MLA: L. R. Shoenberger Technical Papers and Notes - Iron and Steel Division - A Boron Steel for Deep Drawing. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1959.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account