The Economic Production of Uranium by In-Situ Leaching

The American Institute of Mining, Metallurgical, and Petroleum Engineers
Kim C. Harden
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
8
File Size:
343 KB
Publication Date:
Jan 1, 1980

Abstract

INTRODUCTION The purpose of the following discussion is to present the state of the art of solution mining. Since the economics of a mining method ultimately determines its applicability and viability this presentation shall revolve around the costs of in- situ solution mining. First the assumed physical characteristics of the hypothetical ore body are described, followed by the appropriate operating assumptions. Then after a brief discussion on the type of surface plant to be used, the assumed project time tables and costs for Texas and Wyoming are presented. Finally, the economics of in-situ uranium leaching are analyzed through the use of discounted cash flow rate of return analysis. ORE BODY CHARACTERISTICS The assumption of the ore body characteristics is probably the most variable portion of this discussion. The characteristics that have been used are based mainly on state of the art technology, however, consideration of the most common depths of ore, ore thicknesses, and permeabilities also influenced these assumptions. In addition, it is assumed that these assumptions are equally applicable to Texas and Wyoming. The average grade of the ore is assumed to be .09% U308 with no apparent disequilibrium. The average thickness of ore is 2.29 m (7.5 ft) which results in an average grade-thickness (GT) of .675. The assumed depth to the top of the ore is 121.92 m (400 ft), the ore density is placed at 1.78 gm/cc (18 cu ft/ton), the porosity is estimated to be 28% and the permeability 1 darcy. These assumed ore body characteristics are shown in Table I. In addition, it is specified that the costs to be later discussed are based on a minimum GT cut-off of 0.15. It is more common to use GT cut-offs of 0.30 to 0.50 but GT cut-offs as low as 0.15 in conjunction with a minimum grade of 0.05% U308 have been used in the past with success and is considered state of the art. The ultimate percentage of uranium recovered from the ore is left to the discretion of the reader since the costs and economics are based on pounds recovered by the surface plant. OPERATING AS.SUMPTIONS An annual production rate of 200,000 lbs U308!yr was chosen for this example. In order to maintain this production rate, based on the ore body characterized above, a flow of 4731 liter/min (1250 GPM) with a recovery solution grade averaging .039 gm U308/liter is assumed. A regular 5 spot well field pattern is used with a well spacing of 21.5 m (70.7 ft) between like wells and 15.24 m (50 ft) between unlike wells. This well spacing gives each well an area of influence equal to 232.25 sq m (2500 sq ftl. An excess wells factor of 1.17 is used to estimate additional monitor wells and well field boundary wells. Each production well is expected to yield an average flow rate of 37.85 liter/min (10 GPM). In addition it is assumed that the ore body has a good shape in that it is not tenuous and narrow but has at least an average width of 200 ft. The process chemistry required for this ore body is assumed to be based on the sodium carbonate System- Oxygen is the chosen oxidant. Sodium chloride elution followed by precipitation with hydrogen peroxide makes up the remaining portion of the process. A fluidized up-flow ion exchange system is specified. The operating assumptions are listed in Table II. Restoration of the ore body shall be assumed to be accomplished through the use of ground water flush. Other methods may be considered as having to fall within the costs estimated for a ground water flush in order to be economic. In Texas it is assumed that a high capacity disposal well (200 GPM +I is required and in Wyoming evaporation ponds covering approximately 35 acres are to be used. No specific cost has been given to restoration. Instead only the additional capital investment for restoration equipment is given. Then, one year of restoration operating expense is estimated and included as the operating expense for one year beyond the last pound of U308 produced. It is also assumed that restoration will be pursued in the mined out areas of the ore body contiguous with ongoing production.
Citation

APA: Kim C. Harden  (1980)  The Economic Production of Uranium by In-Situ Leaching

MLA: Kim C. Harden The Economic Production of Uranium by In-Situ Leaching. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1980.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account