Underground Mining - Determination of Rock Drillability in Diamond Drilling

The American Institute of Mining, Metallurgical, and Petroleum Engineers
C. E. Tsoutrelis
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
6
File Size:
1698 KB
Publication Date:
Jan 1, 1970

Abstract

A new method for determining rock drillability in diamond drilling is discussed; the method takes into consideration both penetration rate and bit wear. The method is based on drilling a rock specimen under controlled laboratory conditions using a model bit. The technique used for determining the experimental variables is extremely simple, quick, and reliable. Drillability is then determined by the mathematics of drilling. In considering the different factors that affect diamond drilling performance, the nature of the rock to be drilled is of outmost importance since it affects significantly the drilling costs and such other variables as bit type and design, drilling thrust, and bit rotary speed. Many attempts have been made to study this effect by correlating actual drilling performances either to certain physical properties of the rock being drilled1-? or to test drilling data obtained under laboratory conditions.7-13 These attempts were aimed at providing a reliable method of predicting by simple means the expected rock behavior in actual drilling, thus giving the engineer a tool to use in estimating drilling performances and costs in different types of rock. The purpose of this paper is to describe such a method by which rock drillability (a term used in the technical literature to describe rock behavior in drilling) could be determined in diamond drilling. It is believed that the proposed simple and reliable method will cover the need of the mining industry for a workable method of measuring the drillability of rocks. It should be emphasized, however, that since drill-ability depends on the physical properties of rock and each drilling process (diamond, percussive, rotary) is affected by different or partly different rock properties,14-l6 the proposed method of determining rock drillability cannot be extended to the other drilling processes. The results presented in this paper form part of an extensive three-year research program carried out by the author in the laboratories of the Greek Institute of Geology and Subsurface Research. During this period the effects of the physical properties of rocks and of such operational variables as drilling thrust and bit rotary speed in diamond drilling were investigated in detail. DRILLABILITY CONCEPT The literature is not devoid of drillability studies. While there are a number of investigators1,3,5-7,9-0,12-13,17 who have attempted to establish by direct methods (i.e., drilling tests under laboratory conditions) or indirect (i.e., through a physical property of rock) an index from which the drilling performance in a given rock may be estimated, very few6-7,9,12, of the proposed methods seem to be of much practical value to the diamond drilling engineer and none to date has been universally accepted. Commenting on the proposed methods for assessing rock drillability, Fish14 remarks that "for a measure of drillability to be accepted it is essential that penetration rate at a given thrust and bit life are elucidated as otherwise the method is of little value." This statement should be examined in more detail by making use of the penetration rate-drilling time diagram obtained in drilling a rock under constant operational conditions. Furthermore, the merits of using this diagram to describe rock drillability will be pointed out. At the same time reference will be made to this diagram when discussing some previously proposed methods. Fig. 1 illustrates such a diagram for three rocks,A, B, and C, which have been diamond drilled under identical conditions. It is assumed here that rocks A and B have the same initial penetration rate, i.e., VOA = Vog, but since rock B is more abrasive than A, rapid bit wear occurs and as a result the fall of its penetration rate with respect to time is more vigorous than in rock A. This is shown graphically by a steeper V = f(t) (0 curve in this rock than in rock A. Rock C has a lower initial penetration rate, due to higher strength properties16 but since it is not very abrasive, only a slight fall of its penetration rate occurs during drilling (in this category are some limestone and marbles with compressive strength above 1000 kg per sq cm). It follows from the foregoing considerations that the characteristic for each rock curve (I) is a function of (i), the penetration rate of the rock Vo recorded at the instant of commencing drilling, which determines the starting point of the curve (1) on the y-axis and (ii), the abrasive rock properties which determine the rate of fall of Vo with respect to time. Thus, curve (I) provides an actual picture of the rock behavior in drilling for given operational conditions, and it can be used with complete satisfaction to assess rock drillability. It can be seen clearly from Fig. I that proposed methods for assessing rock drillability by measuring the
Citation

APA: C. E. Tsoutrelis  (1970)  Underground Mining - Determination of Rock Drillability in Diamond Drilling

MLA: C. E. Tsoutrelis Underground Mining - Determination of Rock Drillability in Diamond Drilling. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1970.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account