Uranium Ore Body Analysis Using The DFN Technique

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 3
- File Size:
- 146 KB
- Publication Date:
- Jan 1, 1979
Abstract
INTRODUCTION The delayed fission neutron, or DFN technique for uranium ore body analysis uses the first down-hole method for detecting uranium in place quantitatively. This technique detects the presence of and measures the amount of uranium in the formation. DFN TECHNIQUE DESCRIPTION The DFN technique depends upon inducing a fission reaction in the formation uranium with neutrons, resulting in an anomalous and quantitative return of neutrons from the uranium. Since there are no free, natural neutrons in formation, a good, low noise assessment may be made. There are several methods available for determining uranium quantity in situ. The method used by Century uses an electrical source of neutrons. This is a linear accelerator which bombards a tritium target with high velocity deuterium ions. The resulting reaction emits high energy neutrons which diffuse into the surrounding formation. They lose most of their energy until they come to thermal equilibrium with the formation. Upon encountering a fissile material, such as uranium, these thermal neutrons will react with the material. These reactions produce additional neutrons, the number of which is a function of the number of original neutrons and the amount of fissile material exposed. The particular source used, the linear accelerator, has several distinct advantages over other types of sources: 1. It can be turned off. Thus, it does not constitute a radioactive hazard when it is not in use. 2. It can be gated on in short bursts (6 to 8 microseconds). This results in measurements free of a high background of primary neutrons. 3. The output can be controlled. Thus, the neutron output can be made the same in a number of tools, easily and automatically. There are several interesting reactions which take place during the lifetime of the neutrons around the source. During the slowing down or moderating process the neutron can react with several elements. One of these is oxygen 17. This results in a background level of neutrons in any of the measurements which must be accounted for in any interpretation technique. These elements are usually uninteresting economically. The high energy neutrons will also react with uranium 238. However, the proportions of uranium 235 and 238 are nearly constant. Therefore, this reaction aids detection of uranium mineral and need not be seperated out. Upon reaching thermal energy the neutrons will react with any fissile material, uranium 235, uranium 234, and thorium 232. At present, we do not have good techniques for seperating out the reaction products of uranium 234 and thorium 232. However, uranium 234 is a small (.0055%) percentage of the uranium mineral and thorium 232 is usually not present in sedimentary deposits. When the uranium 235 reacts with thermal neutrons it breaks into two or more fragments and some neutrons. This occurs within a few microseconds after the primary neutrons have moderated and is the prompt reaction. One system uses this; the PFN or prompt fission neutron technique. We don't use this method because the neutron population is low and, therefore, the signal is small and difficult to work with, accurately. Within a few microseconds to several seconds the fission fragments also decay with the emmission of additional neutrons. Now, with a long time period available and a large neutron population we gate off the generator and measure the delayed fission neutrons after a waiting period. These neutrons can be a measure of the amount of uranium present around the probe. Thermal neutrons are detected with the DFN technique instead of capture gamma rays to avoid some of the returns from other elements than uranium. LOGGING TECHNIQUE The exact logging technique will depend, to some extent, upon the purpose of the measurement. However, the general technique is to first run the standard logs. These will include: 1. The gamma ray log for initial evaluation of the mineral body and for determining the position of the borehole within the mineral body, 2. The resistance or resistivity log for determining the formation quality, lithology, and porosity. 3. The S. P. curve for estimating the redox state and shale content, and measuring formation water salinity, 4. The hole deviation for locating the position, depth, and thickness of the mineral (and other formations), and 5. The neutron porosity curve. The neutron porosity curve is most important to the interpretation of the DFN readings. The neutrons from this tool are affected in the same way by bore hole and formation fluids as the DFN neutrons are. Therefore, we can use this curve to determine effect of the oxygen 17 in the water. Of course, this curve can be used to determine formation porosity. It can also be used to calculate formation density.
Citation
APA:
(1979) Uranium Ore Body Analysis Using The DFN TechniqueMLA: Uranium Ore Body Analysis Using The DFN Technique. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1979.