Search Documents
Search Again
Search Again
Refine Search
Refine Search
- Relevance
- Most Recent
- Alphabetically
Sort by
- Relevance
- Most Recent
- Alphabetically
-
Institute of Metals Division - Viscous Flow of Copper at High Temperatures (Discussion, p . 1274)
By A. L. Pranatis, G. M. Pound
Changes in length of copper foils of varying thickness and grain size were measured under such conditions of low stress and high temperature that it is believed that creep was predominately the result of interboundary diffusion of the type recently discussed by Conyers Herring. The surface tension of copper was calculated and results confirmed previous work within the limits of experimental error. Under the assumption of viscous flow, viscosities were calculated as a function of temperature and grain size. Predictions of the Nabarro Herring theory of surface grain boundary flow were borne out fully and the Herring theory of diffusional viscosity is strongly supported. ONLY a relatively few techniques for obtaining the surface tension of solids are presently available. Of these, the simplest and most straight forward is the direct measurement of surface tension by the application of a balancing counterforce. Thin wires or foils are lightly loaded and strain rates (either positive due to the downward force of the applied load or negative if the contracting tendency of surface tension is sufficiently greater than the applied stress) are observed. By plotting strain rates against stress, the load which exactly balances the upward pull is found and a simple calculation yields a value for the surface tension. The technique is of comparative antiquity, and solid surface tension values were reported by Chapman and Porter,' Schottky; and Berggren" in the early part of the century. Later, the filament technique became fairly well established as a method for determining the surface tension of viscous liquids, and Tammann and coworkers,'. " Sawai and co-worker and Mackh howed good agreement between the values of surface tension for glasses and tars obtained by the filament technique and by more conventional methods. With the increased confidence in the technique gained in these experiments, the method was applied to solid metals and the first reliable values of surface tension of solid metals were reported by Sawai and coworkers10' " and by Tammann and Boehme." More recently, Udin and coworkersu-'" have reported the results of experiments with gold, silver, and copper wires. Similar experiments with gold wires were carried out by Alexander, Dawson, and Kling.'" The excellent review articles of Fisher and Dunn" and of Udinl@ should be referred to for detailed criticism of the foregoing work and for discussion of underlying theory. In all the foregoing calculations, it is assumed implicitly that the material contracts or extends uni- formly along the length of the specimen and also that it flows in a viscous fashion, i.e., that strain rates are proportional to stress. For an amorphous material, such as glass, tar, or pitch, the assumptions are quite valid and good agreement is obtained with values of surface tension measured by other techniques. The values reported for metals, however, are occasionally regarded with misgiving, since it can be argued that, because of their crystalline nature, true solids can not deform in a viscous fashion. If this is true, then the results reported for solid metals over a long period of years are of only doubtful value. Thus it is clearly necessary that a mechanism be established that would explain both the viscous flow and the uniform deformation that has been assumed. Such a mechanism has been proposed by Herring."' Briefly, he suggests that, under the conditions of the experiment, deformation takes place by means of a flow of vacancies between grain boundaries and surfaces. This is a direct but independent extension of the theory proposed by Nabarro" in an attempt to explain the microcreep observed by Chalmer~.In a condensed form the Herring viscosity equation is TRL there 7 is the viscosity, T the absolute temperature, R and L grain dimensions, and D the self-diffusion coefficient. In its complete form, all constants are calculable and it includes such factors as grain shape, specimen shape, and degree of grain boundary flow. When applied to existing data, good agreement was obtained between predicted and observed flow rates. The theory received provisional confirmation from the work of Buttner, Funk, and Udin" who observed viscosities in 5 mil Au wire much higher than those in the 1 mil wire used by Alexander, Dawson, and Kling.'" More significant were the completely negligible strain rates found by Greenough" in silver single crystals. Opposed to these observations were those of Udin, Shaler, and Wulff'" who found indications of viscosity decreasing as grain size increased. Thus, complete confirmation of the theory was lacking in that the data to which it could be applied contained only a limited number of grain sizes. Hence, it was proposed that a series of experiments be carried out with thin foils of varying grain size up to and including single crystals, where, according to the Herring theory, deformation would occur only at almost infinitely slow rates.
Jan 1, 1956
-
Thermal Metamorphism and Ground Water Alteration Of Coking Coal Near Paonia, Colorado
By Vard H. Johnson
IN 1943 the U. S. Bureau of Mines undertook drilling in an effort to develop new reserves of coking coal in an area near Paonia, Colo., as a part of an attempt to alleviate the shortage of known coking coal of good quality in the western United States. Geologic mapping of the area was undertaken by the U. S. Geological Survey with the purpose of first furnishing guidance in location of drillholes and later aiding in interpreting the results of the drilling. The drilling program was under the general supervision of A. L. Toenges of the U. S. Bureau of Mines. J. J. Dowd and R. G. Travis were in charge of-the work in the field. Geologic mapping was started by D. A. Andrews of the Geological Survey in the summer of 1943 and was continued from the spring of 1944 to 1949 by the writer. The first few holes drilled failed to locate coking coal, but in the summer of 1944 coking coal was discovered by drilling 6 miles east of Somerset, Colo., the site of present mining. In the succeeding years, 1945 to 1948, 100 to 150 million tons of coal suitable for coking were blocked out by drilling. The ensuing discussion of the geologic controls on the distribution of coking coal in the area is based on the geologic mapping as well as the drilling done in the Paonia area, more complete descriptions of which have appeared or are in process of publication.1-5 In order that the possible geologic controls affecting the present distribution of coking coal may be considered, it is necessary to discuss briefly the indicators. of coking quality coals. Coking Coal Coal that cokes has the property of softening to form a pastelike mass at high temperatures under reducing conditions in the coke oven. This softening is accompanied by the release of the volatile constituents as bubbles of gas. After release of the contained gases and upon cooling, a hard gray coherent but spongelike mass remains that is referred to as coke. This substance varies greatly in physical properties and, to be suitable for industrial use, must be sufficiently dense and strong to withstand the crushing pressure of heavy furnace loads. Western coals have a generally high volatile content and therefore form a satisfactory coke only when they attain a rather high fluidity during the process of heating and distillation in-the coke oven. When this high degree of fluidity is developed, the volatile constituents escape and leave a finely porous coke. On the other hand, when the degree of fluidity is low the product is an excessively porous and therefore physically weak mass that is called char.6 Small quantities of oxygen present in coal are believed to decrease the fluidity of the material during the coking process and to favor the development of char rather than coke. In consequence, coal chemists have for some time considered the possibility of developing an index to coking. qualities by inspection of chemical analyses of coals.7 A formula has now been developed that does permit a rough preliminary estimate of the cokability of coal on the basis of the analysis on an ash and moisture-free basis. Coals may be eliminated as possible coking fuels if the oxygen content is greater than 11 pct. Similarly the ratio of hydrogen to oxygen must be greater than 0.5 and the ratio of fixed carbon to volatile constituents must be greater than 1.3. If the coal, on the basis of these limiting factors, appears to have possible coking qualities, the following formula permits determination of the coking index: Coking index =[ a+b+c+d 5] a equals 22/oxygen content on ash and moisture- free basis, . b equals two times the hydrogen content divided by oxygen content on moisture and ash-free basis, c equals fixed carbon/1.3 x volatile matter, and d equals the heating value on moist, ash-free basis/13,600. Coking indices higher than 1.0 suggest that the coal will coke, and indices above 1.1 indicate good coking tendencies. Although generally usable, this formula is not completely satisfactory because the percentage of oxygen shown in ultimate analyses is derived only by difference; i.e., by subtracting the sum of the percentages of the constituents determined analytically from 100 pct.8,9 Although the coking index indicates the coking tendencies of coal, it is necessary to make physical tests of coke before its industrial value can be determined. The U. S. Bureau of Mines has developed a standard procedure for determining the approximate strength of coke that would be formed from a given coal. In this test one part of ground coal, mixed with 15 parts of carborundum, is baked to form a standard briquette. The weight, in kilograms, necessary to crush the briquette is termed the agglutinating index. This test determines the relative fluidity attained in the coking process by measuring the cementing strength of the coal in the briquette. A
Jan 1, 1952
-
Coal - Thermal Metamorphism and Ground Water Alteration of Coking Coal Near Paonia, Colorado
By Vard H. Johnson
IN 1943 the U. S. Bureau of Mines undertook drilling in an effort to develop new reserves of coking coal in an area near Paonia, Colo., as a part of an attempt to alleviate the shortage of known coking coal of good quality in the western United States. Geologic mapping of the area was undertaken by the U. S. Geological Survey with the purpose of first furnishing guidance in location of drillholes and later aiding in interpreting the results of the drilling. The drilling program was under the general supervision of A. L. Toenges of the U. S. Bureau of Mines. J. J. Dowd and R. G. Travis were in charge of the work in the field. Geologic mapping was started by D. A. Andrews of the Geological Survey in the summer of 1943 and was continued from the spring of 1944 to 1949 by the writer. The first few holes drilled failed to locate coking coal, but in the summer of 1944 coking coal was discovered by drilling 6 miles east of Somerset, Colo., the site of present mining. In the succeeding years, 1945 to 1948, 100 to 150 million tons of coal suitable for coking were blocked out by drilling. The ensuing discussion of the geologic controls on the distribution of coking coal in the area is based on the geologic mapping as well as the drilling done in the Paonia area, more complete descriptions of which have appeared or are in process of publication."' In order that the possible geologic controls affecting the present distribution of coking coal may be considered, it is necessary to discuss briefly the indicators of coking quality coals. Coking Coal Coal that cokes has the property of softening to form a pastelike mass at high temperatures under reducing conditions in the coke oven. This softening is accompanied by the release of the volatile constituents as bubbles of gas. After release of the contained gases and upon cooling, a hard gray coherent but spongelike mass remains that is referred to as coke. This substance varies greatly in physical properties and, to be suitable for industrial use, must be sufficiently dense and strong to withstand the crushing pressure of heavy furnace loads. Western coals have a generally high volatile content and therefore form a satisfactory coke only when they attain a rather high fluidity during the process of heating arid distillation in the coke oven. When this high degree of fluidity is developed, the volatile constituents escape and leave a finely porous coke. On the other hand, when the degree of fluidity is low the product is an excessively porous and therefore physically weak mass that is called char." Small quantities of oxygen present in coal are believed to decrease the fluidity of the material during the coking process and to favor the development of char rather than coke. In consequence, coal chemists have for some time considered the possibility of developing an index to coking qualities by inspection of chemical analyses of coals.' A formula has now been developed that does permit a rough preliminary estimate of the cokability of coal on the basis of the analysis on an ash and moisture-free basis. Coals may be eliminated as possible coking fuels if the oxygen content is greater than 11 pct. Similarly the ratio of hydrogen to oxygen must be greater than 0.5 and the ratio of fixed carbon to volatile constituents must be greater than 1.3. If the coal, on the basis of these limiting factors, appears to have possible coking qualities, the following formula permits determination of the coking index: a+b+c+d Coking index = -------- 5 a equals 22/oxygen content on ash and moisture-free basis, b equals two times the hydrogen content divided by oxygen content on moisture and ash-free basis, c equals fixed carbon/l.3 x volatile matter, and d equals the heating value on moist, ash-free basis/13,600. Coking indices higher than 1.0 suggest that the coal will coke, and indices above' 1.1 indicate good coking tendencies. Although generally usable, this formula 'is not completely satisfactory because the percentage of oxygen shown in ultimate analyses is derived only by difference; i.e., by subtracting the sum of the percentages of the constituents determined analytically from 100 pct. Although the coking index indicates the coking tendencies of coal, it is necessary to make physical tests of coke before its industrial value can be determined. The U. S. Bureau of Mines has developed a standard procedure for determining the approximate strength of coke that would be formed from a given coal. In this test one part of ground coal, mixed with 15 parts of carborundum, is baked to form a standard briquette. The weight, in kilograms, necessary to crush the briquette is termed the agglutinating index. This test determines the relative fluidity attained in the coking process by measuring the cementing strength of the coal in the briquette. A
Jan 1, 1953
-
Part VIII – August 1969 – Papers - Hydrogen Permeation Through Alpha-Palladium
By George S. Ansell, John B. Hudson, Stephen A. Koffler
The permeability of hydrogen through the a phase of palladium has been measured by a low pressure permeation technique under conditions such that bulk diffusion was the rate-controlling process. The observed permeability is described by the equation: J = 1.80 x 1O-3 P½exp(-3745)/RT) cc(stp)/sec/cm2/en over a range of hydrogen pressure, P, from 2.9 x 10-5 m Hg to 5.0 x 10-3 cm Hg, and over a temperature range, T, from 300" to 709°K. The fact that the permeability shows a square root dependence on pressure and a reciprocal dependence on thickness was taken as evidence that bulk diffusion, rather than surface reactions, was the rate-controlling process. The permeability data were used in conjunction with the solubility data of Salmon et al., to determine the diffusivity of hydrogen through palludium as: D = 4.94 x 10-3 exp(-5745/RT) cm2/sec There was no influence of sub structural defects observed over the temperature range employed. From the permeability data obtained, coupled with grain size measurements, it was concluded that the ratio of grain boundary diffusivity to bulk diffusivity was less than 105 over the range of temperature investigated. THE diffusive mass transport of hydrogen in the a phase of palladium has been studied previously by numerous investigators.' In spite of the large amount of attention this system has received, there is not good agreement between the results obtained in different investigations.' This is due in part to the fact that the mass transport was surface-limited during some of these studies, rather than being diffusion-controlled3-5 The reason for the disagreement in other cases is not clear. These studies made use of such techniques as rate of absorption from solutions6 and gases,' electrochemical potential,8 time lag,' and permeation10,11 to determine the mass transport behavior. Of these, the gas permeability technique is the only method which allows an easy test to determine if diffusion is the rate-controlling mechanism, thus eliminating the uncertainty regarding the limiting transport processes inherent in the other techniques. The two most recent permeability studies are those of Toda10 and Davis." Toda determined the permeability of hydrogen in the a phase of palladium over the temperature range from 170" to 290°C, and over the pressure range from 36 to 630 mm Hg utilizing a steady-state gas-permeability technique. Toda's result was: J = 1.41 x 10-3 P½ exp(-3220/RT) where J = specific permeability in cc(stp)/sec/cm2/cm, P½ = square root of the inlet pressure in (cm Hg)½, R = Universal gas constant, and T = temperature in deg Kelvin. Davis11 also employed a steady-state gas-permeability technique over the temperature range from 200" to 700°C and over the pressure range from 0.02 to 760 mm Hg. His result for the permeability of hydrogen in the a phase of palladium was: J = 3.15 x 10-3 P½ exp(-A440/RT) In the range of overlapping temperature for these two investigations, the values of the specific permeability calculated from the above two equations differ by a factor of about 1.8. In the present investigation, the permeation of hydrogen in the a phase of palladium was determined over a wide temperature range, 27" to 436oC, and over the pressure range from 2.9 x 10-5 to 5.0 x 10-3 cm Hg. This temperature range overlaps that of the previous investigations of Toda and Davis, but also covers the lower temperature range which has never before been investigated. The lower pressure range used here avoided the interaction between the dissolved hydrogen atoms observed at higher hydrogen concentrations.' MATERIALS The as-received palladium specimens were cold rolled from a casting and were supplied as 5.08 cm discs of 0.508 and 0.762 mm thickness. According to J. Bishop and Company specifications, the composition of the discs was 99.95 pct Pd, the balance being Cu, Ag, Au, and Ir. In order to obtain samples of varying grain size, the as-received discs were then heat treated. Sample 1 was treated for eight minutes in a nitrogen atmosphere at 810°C and then air-cooled. Sample D was heated first to 550°C in helium. The helium atmosphere was then immediately replaced by hydrogen and the temperature was slowly raised to 1220°C and held for 22 hr. The sample was then cooled to 550°C where the hydrogen was replaced by helium and the disc was further furnace-cooled to room temperature. Sample H was given the same heat treatment, only with hydrogen substituted for helium below 550°C. The reason that hydrogen was not used throughout the entire annealing cycle for samples D and H was to prevent the distortion encountered by low-temperature cycling in hydrogen observed by Darling." After these heat treatments were completed, the
Jan 1, 1970
-
Part XII – December 1968 – Papers - The Use of Grain Strain Measurements in Studies of High-Temperature Creep
By R. L. Bell, T. G. Langdon
A technique was developed- for determining the grain strain, and hence the grain boundary sliding contribution, occurring during the high- temperature creep of a magnesium alloy, from the distortion of a grid photographically printed on the specimen surface. The results were compared with those obtained from measurements of grain shape, both at the surface and interrwlly, and it was concluded that the grain shape technique may substantially underestimate the grain strain and overestimate the sliding contribution due to the tendency for migration to spheroidize the grains. ALTHOUGH a considerable volume of work has been published on the role of grain boundary sliding in high-temperature creep, many of the estimates of Egb (the contribution of grain boundary sliding to the total strain) have been in error due to the use of incorrect formulas or inadequate averaging procedures.' One of the most easy and convenient measurements from which to compute Egb is that of v, the step normal to the surface where a grain boundary is incident. Unfortunately, this parameter is also the one associated with the treatest number of pitfalls. Values of v have been used to calculate Egb from the equation: egb =knrVr [1] where k is a geometrical averaging factor, n is the number of grains per unit length before deformation, v is the average value of v, and the subscript ,r denotes the procedure of averaging along a number of randomly directed lines. If the dependence of sliding on stress were assumed, it would be possible, in principle, to calculate k from the known distribution of angles between boundaries and the surface. This in itself is difficult because the distribution depends on the history of the surface,' but the problem is even further complicated by the fact that v depends on other factors such as the unbalanced pressure from subsurface grains.3 However, the great simplicity of the measurement procedure for v makes it highly desirable that this problem of k determination should be overcome. In the present experiments, this was achieved by the use of an indirect empirical method in which the grain strain, eg, at the surface was determined by the use of a photographically printed grid. The assumption here is that the total strain, et, is simply the sum of that due to grain boundary sliding, egb, and that due to slip or other processes within the grains, eg. SO that: Et = Eg + Egb [2] Thus k is given by: In practice, it is customary to indicate the importance of sliding by expressing it as a percentage of the total creep strain; this quantity is termed y (= 100Egb/Et). The determination of Eg from a printed grid within the grains avoids the difficulties due to boundary migration which should be considered when the grain strain is calculated from measurements of the average grain shape before and after deformation. As first pointed out by Rachinger,4,5 however, this latter technique has the particular advantage that it can also be applied in the interior of a polycrystal. Recently, several workers have produced evidence on a variety of materials6-'' to support the observation, first made by Rachinger on aluminum,4,5 that 7 can be very high, 70 to 100 pct, in the interior, even when the surface value, determined from boundary offsets, is very much lower.10'11 Although there have been criticisms both of the shortcomings of the grain shape technique'' and of the different procedures used to determine y at the surface,' it seemed important to check whether measurements of sliding by grain shape gave values of y which were truly representative of the material. In the present experiments, grain shape measurements were therefore made both at the surface and in the interior for comparison with one another and with the independent measurements of grain strain using the surface grid technique. EXPERIMENTAL TECHNIQUES The material used in this investigation was Magnox AL80, a Mg-0.78 wt pct A1 alloy supplied by Magnesium Elektron Ltd., Manchester. Tensile specimens, about 7 cm in length, were prepared from a 1.27-cm-diam rod, with two parallel longitudinal flat faces each approximately 3 cm in length. The specimens were annealed for 2 hr in an oxygen-free capsule, at temperatures in the range 430° to 540°C, to give varying grain sizes, and, prior to testing, the grain size of each was carefully determined using the linear intercept method. This revealed that the grains were elongated -0.5 to 5 pct in the longitudinal direction. Testing was carried out in Dennison Model T47E machines under constant load at temperatures in the range 150" to 300°C. At temperatures of 200°C and below, tests were conducted in air with the polished flat faces coated with a thin film of silicone oil to prevent oxidation; at higher temperatures, an argon atmosphere was used. To determine v,, each test was interrupted at regular increments of strain and the specimen removed from the machine. At the lower strains, when v, was less than about 1 pm, measurements were taken on a Zeiss Linnik interference microscope;
Jan 1, 1969
-
Part IX – September 1968 - Papers - Grain Boundary Sliding, Migration, and Deformation in High-Purity Aluminum
By H. E. Cline, J. L. Walter
Grain boundary sliding and migration were studied in pure aluminum bicrystal and polycrystal samples with two-dimensional grain structure. Scratches, 50 P apart, were used for measurement of sliding and migration distanceso. Samples were deformed at constant rate at 315C and events recorded continuously on wrotion picture film. Electron micrograPhs of boundary-scratch intersections were obtained. Yield and flow stress values were measured. The sequence of sliding and migration events for a three-grain junction is described in detail. Sliding depended only on the resolved shear stress imparted to the boundary. Sliding was accowmodated by formation of shear zones in grains opposite triple points and adjacent to curved boundaries. These shear zones provided the driving force for grain boundary migration. Migration caused rumpling of the boundaries, decreasing the sliding rate. Sliding and migration generally began at the same time, occurred simultaneously and ended at the same time. In the bicrystal, sliding and migration rates were proportional. Initial sliding rules of 5 X joe cm per sec. were measured for the polycrystal and bicrystal samples. These sliding rates agree wilh the internal friction experirnents of K;. The observations seem consistent with a viscous boundary sliding nzechanism. GRAIN boundary sliding is the translation of one grain relative to its neighbor by a shear motion along their common boundary. Sliding is thought to be an important mode of deformation at elevated temperatures and at low strain rates such as prevail in creep,' and perhaps in the area of superplastic behavior.2"4 Although much work has been done to investigate grain boundary sliding, the effort has not led to the identification of a mehanism. KG showed that grain boundaries in aluminum exhibit a viscous nature under very small displacements of internal friction measrements. Various dislocation mechanisms have been proposed but are without conclusive experimental support. Attempts to relate sliding to 6's viscous boundaries have been unsuccessful in that measured rates of sliding are always several orders of magnitude lower than KG'S results would predict.= In bi crystals7and polycrystalsR of aluminum tested under constant load, the grain boundary sliding was found to be proportional to the total creep elongation which indicated that sliding might be controlled by deformation of the grains. Shear zones were observed to extend beyond grain boundaries at triple points to accommodate the sliding.8 Surface observations brought forth the opinion that sliding and migration occurred alternately, in sequence.' Measurements of sliding at the surface have been criticized because they might not be representative of the interior of the sample. Generally speaking, it seemed that much of the previous work and knowledge was based on observations made at relatively low magnification and examination of samples after deformation had been accomplished. Thus, it was the purpose of the present study to continuously record, at high magnification, the events occurring during the deformation of pure aluminum. Samples with two-dimensional grain structures were used to simplify interpretation of the results. The sliding and migration of small areas of many samples were continuously recorded by time-lapse motion pictures. Replicas of the surface were used to provide high-resolution electron micrographs. These observations, coupled with tmsile strength data, provide sufficient information to arrive at an understanding of the phenomenon. EXPERIMENTAL PROCEDURE An ingot of 99.999 pct A1 was rolled to sheet, 0.127-cm thick. Tensile specimens, with a gage length of 0.85 cm, were machined from the sheet. Bicrystal tensile specimens, of the same dimensions, were spark cut from a large bicrystal ingot. The grain boundary was oriented at 45 deg to the tensile axis. The surfaces of the tensile samples were ground flat on fine metallographic paper and were then electropolished in a solution of 75 parts absolute alcohol and 25 parts of perchloric acid. The solution was cooled in an ice-water bath. Using a weighted sewing needle suspended from a small pivot on a precision milling machine, a grid of fine scratches, 50 p apart, was scribed on one surface of the sample. The polycrystalline samples were then annealed in hydrogen for 15 min at 350" to 400°C to produce a two-dimensional grain structure of about 0.2-cm average grain diameter which would not undergo further growth at the test temperature, 315OC. Examination of both surfaces of the samples showed that the grain boundaries were perpendicular to the surface of the polycrystal and bicrystal samples. A hot-stage tensile machine was constructed for use with an optical microscope as shown in Fig. 1. The specimen is shown mounted in the grips. The grips ride in V-ways so that the sample can be mounted without damage. The rear grip is free to slide so that when the sample expands during heating it is not put under a compressive stress. When the grips and samples are at temperature, the rear grip is locked in place by two set-screws. The other grip is connected to a synchronous drive motor which, through a worm gear and a fine-threaded rod, deforms the
Jan 1, 1969
-
Extractive Metallurgy - The Recovery of Cadmium from Cadmium-copper Precipitate, Electrolytic Zinc Co. of Australasia, Risdon, Tasmania - Discussion
By G. H. Anderson
H. R. HANLEY*—I have been asked to discuss briefly the development of rotating cathodes for the electrolytic deposition of cadmium. The earliest recorded use of rotating cathodes was by Hoepfner at Frufurt, Germany about sixty years ago. He elec-trolized zinc chloride solution using diaphragms to separate electrodes. In the early experimental work of the Bully Hill Copper Mining and Smelting Co., Shasta County, Calif., rotating aluminum cathodes 4 ft in diam were used in the electrolysis of an acid zinc sulphate solution. Finished cathodes weighing up to 400 lb were produced. Because of mechanical difficulties, this type of cathode was abandoned for zinc, but was later used for cadmium because of the relative smoothness of deposit in comparison with stationary plates with comparable current densities. Cadmium sponge which forms on the cathode at moderate current densities (without special treatment) is entirely eliminated by a slow rotation. The rate of rotation of the cathode has an effect on the mechanical nature of the deposit. A high rate of rotation concentrates the adhering electrolyte on the shaft; a moderate rate appears to concentrate on the cathode a short distance out from the shaft tending to corrode the deposit in the form of a ring. At a very slow rotation (2 to 3 rpm) the adhering electrolyte gravitates nearly vertically, thus avoiding the cutting ring referred to above. The true explanation for the smoother deposits obtained on rotating cathodes may not be given definitely as the numerous factors involved are not thoroughly understood. Smooth deposits are obtained when the orderly growth of the metal crystals in the cathode lattice are disorganized. Thus the crystals form and grow for a very short interval when they are arrested and a new crystal forms. The continued growth of the original crystals provides large crystals and a rough deposit. Also if the acidity of the electrolyte is low, hydrogen gas bubbles adhere to the deposit. As the cathode is rotated the gas surface is brought into the atmosphere where they burst; thus the deposit is made on a surface relatively gas-free. An aluminum hub distance piece was riveted to each aluminum disk 4 ft in diam, slipped on a 4 1/2 in. steel shaft and pressed tight to prevent acid electrolyte seeping through to the shaft. The 9-cathode assembly was supported on insulated bearings. Electrical contact to the shaft was made through what was equivalent to a copper pulley. Sufficiently high conductivity brushes were placed on the face of the pulley to lead the current to the cathode bus bar. The assembly was driven by a link belt contacting a sprocket insulated from the shaft. The lead anodes were semicircular and supported on porcelain insulators placed on the bottom of the cell. Two anodes were provided for each cathode to permit an 8-in. space between them without increasing the ohmic resistance. This ample spacing permitted easy stripping of deposit with the assembly in place. Cathode cadmium was melted under 650 W cylinder oil. After casting, the primary slabs were remelted under molten caustic soda and cast into pencils 1 1/32 in. in diam. Rotating cathodes for deposition of cadmium are used at Risdon, Tasmania, and at Magdeburg, Germany. W. G. WOOLF*—This paper is very-interesting to me because in our work at the Electrolytic Zinc Plant of the Sullivan Mining Co. we had an exactly similar problem—that is, a method of producing cadmium from our purification residue, the recovery of the contained copper as a copper precipitate which could be sent to a copper smelter and the production of merchantable cadmium. It is interesting to me, not knowing of the work of the Risdon people, how closely we approximate them in their main metallurgy, diverging at several interesting steps which I would like to discuss for just a moment. For example, at Risdon they oxidize their purification residue. In our practice we take the current residue as it is produced in the purification department of the zinc plant and process it in the cadmium plant. The only oxidation that it obtains is the oxidation in the presses, the dumping of the presses and the collection and transportation of the residue to the cadmium plant. We find that the leaching of that residue does not necessarily require the oxidation step that the Risdon people evidently find necessary. The discussion of oxidation comes in again in the matter of the treatment of the precipitated cadmium sponge with zinc dust which again at Risdon is oxidized but which we do not attempt to oxidize except as it oxidizes itself in the storage. There is a partial oxidation which cannot be avoided, as Mr. David-sou pointed out, but we make no attempt to attain a complete oxidation and we dissolve the cadmium sponge in the sul-
Jan 1, 1950
-
Minerals Beneficiation - Particle Size and Flotation Rate of Quartz - Discussion
By T. M. Morris, W. E. Horst
W. E. Horst—In regard to the flotation rate being described as "first orcler" for flotation of quartz particles below 65 p in size (or any size studied in this work) in this paper, it appears that the authors' conception of rate equations is not in agreement with cited references. A first order rate equation has as one of its forms the following: a In.=a/a-x=kt where a = initial concentration, a—x = concentration at time t, t = time, and k = constant. The constant, k, has the dimension of reciprocal time which is similar to the specific flotation rate, Q. described by Eq. 2 in the authors' article, as has been previously discussed by Schumann (Ref. 1 of original article). The plotted data presented in Fig. 4 of the article utilizes the specific flotation rate, Q (min.'); however, there is not adequate data given to indicate the order of the rate equation which describes the flotation behavior of the quartz system studied. Results from the experimental work indicate that the relationship between rate of flotation (grams per minute) and cell concentration (provided the percent solids in the flotation cell is less than 5.2 pct and the particle size is less than 65 p) is described by an equation of the first order (R, = k c+", n being equal to 1 in this size range) and the use of the first order rate equation does not apply. Similarly the relationship for other particle size ranges studied is expressed by equations of the second or third order depending on the magnitude of n. T. M. Morris—The authors are to be commended for the experiments which they performed. As they state in their discussion the concentration of collector ion In solution did change with change in concentration of solids in the flotation cell. Since for a given slze of particle, flotation rate increases with concentration of collector until a maximum is reached, the effect of concentration of particles in their experiments was to vary the concentration of collector ions. A collector concentration which insures maximum supporting angle for all particles eliminates the unequal effect of collector concentration on various sized particles and the effect of size of particles and concentration of particles upon flotation rate could be more clearly assessed. I believe that if the authors had increased the concentration of collector to an amount sufficient to attain a maximum supporting angle for all particles they would find that the specific flotation rate of particles coarser than 65 p would be constant with change in the concentration of solids in the flotation cell, and that a first order rate would apply to the + 65 as well as to the —65 p sizes. It might also be discovered when this change in collector concentration was made that the maximum specific rate constant would be shifted toward a coarser fraction than when starvation quantities of collector are used since this practice favors the fine particles and penalizes the coarse particles. P. L. de Bruyn and H. J. Modi (authors' reply)—The authors wish to thank Professor Morris for his kind remarks and for mentioning the influence of equilibrium collector concentration on flotation rate. With a collector concentration sufficient to insure maximum supporting angle for all particles, a first order rate equation may indeed be found to be generally applicable irrespective of size. Such a concentration would, however, lead to 100 pct recovery of the fine particles and consequently defeat the essential objective of the investigation to derive the maximum information on flotation kinetics. To establish absolutely the validity of any single rate equation for a given size range, the ideal method would be to work with a feed consisting solely of particles of that size range. Use of such a closely sized feed would also eliminate the possibility of the interfering effect of different sizes upon one another. The authors do not believe that increasing the collector concentration would shift the maximum specific flotation rate (Q) towards a coarser fraction. Experimentation showed Q to be independent of solids concentration for all particles up to 65 µ in size, whereas the maximum value of Q was obtained in the range 37 to 10 p. Professor Morris contends that the addition of starvation quantities of collector favors fine particles at the expense of coarse particles, but the reason for this is not entirely clear to the authors. The comments by Mr. W. E. Horst are concerned only with the concept of the term "first order rate equation." According to the usage of this term in chemical kinetics, time is an important variable, as is shown in the equation quoted by Mr. Horst. All the experimental results reported by the authors were obtained under steady state continuous operations when the rate of flotation is independent of time. To be consistent with the common usage of the "first order rate equation," it would be more satisfactory to state that under certain conditions the experimental results show that the relation between flotation rate and pulp density is an equation of the first order.
Jan 1, 1957
-
Part V – May 1969 - Papers - Thermodynamics of Nonstoichiometric Interstitial Alloys. I. Boron in Palladium
By Hans-Jürgen Schaller, Horst A. Brodowsky
Activity coefficients of boron in palladium were determined at concentrations up to PdB0.23 by reducing B2O3 between 870" and 1050°C in a controlled H2-H2stream and measuring the resulting weight gain. The deviations from ideal behavior closely resemble those of the system Pd-H and are interpreted in terms of three principles: 1) The solute atoms occupy octahedral interstitial positions. 2) They donate their valence electrons to the 4 d and 5s bands of palladium, raising its Fermi energy. 3) The lattice strain energy is lower for two nearesl -neighbor interstitial particles than for two farther separate ones. SOLID solutions of hydrogen in palladium are a useful subject for studying thermodynamic aspects of the formation of alloys and of nonstoichiometric systems.1-3 The activity of hydrogen is readily measurable to a high degree of accuracy,4'5 even at low temperatures where the deviations from ideal behavior are more pronounced, and its simple structure facilitates an interpretation of these deviations in terms of a detailed model. Two effects are discussed to account for the non-ideal properties:3 An "electronic" effect, connected with the rise of the Fermi energy, as electrons of the interstitial hydrogen atoms enter the electron gas of the metal, and an "elastic" effect, due to an interaction of the regions of strain around each interstitial atom. The electronic effect is based on the idea that the lowest energy levels of the dissolved hydrogen atoms are higher than the Fermi energy, so that the electron will not occupy a localized state but enter into the electron band of the metal.6 The elastic effect is based on the observation that dissolved hydrogen distorts and expands the palladium lattice. The hypothesis is put forward that the elastic strain energy is lower for two adjacent dilatational centers than for two separate ones; i.e., they attract each other. The resulting pair interaction can be used to calculate an elastic contribution to the thermodynamic excess functions by means of one of the statistical methods. This model permitted a detailed description of the solution properties of hydrogen in palladium3 and in palladium alloys.798 An extension of the approach to describe the excess functions of substitutional palladium alloys is possible.9 In order to further test and refine the model, an investigation of other interstitial alloys was started. Palladium dissolves considerable amounts of boron in homogeneous solid solution.10 The palladium lattice expands linearly up to nB = 0.23 (nB = B/Pd atomic ratio), the highest concentration studied." The expan- sion, extrapolated for 1 mole of interstitial per mole of palladium, is 17 pct of the lattice constant of pure palladium vs 5.7 pct in the case of hydrogen.12 The fact that the lattice expands rather than contracts is a strong indication that interstitial positions are occupied. According to neutron diffraction experiments, hydrogen occupies the octahedral sites of the fcc lattice.13 Unfortunately, this direct evidence is not available for the Pb-B system, mainly because of the high-reaction cross section of boron with thermal neutrons. However, by way of analogy and on the grounds of the rather close similarities between the two systems to be reported here, it seems safe to attribute octahedral positions to the dissolved boron, too. At higher boron contents, compounds of stoichiomet-ric compositions are reported such as Pd3B, which has the structure of cementite,14 so that a close structural relationship seems to exist with the system r Fe-C. In their study of hydrogen absorption in Pb-B alloys, Sieverts and Briining noted that alloys with an atomic ratio of about nB = 0.16 are no longer homogeneous15 This observation was confirmed in an extensive X-ray investigation.11,16 The phase boundaries of two miscibility gaps were established. One two-phase region was stable below a transition temperature of about 315°C and extended from nB = 0.015 to 0.178. The other one extended from nB = 0.021 to 0.114 slightly above the transition temperature and had an apex at nB = 0.065 and 410°C. All phases involved have the fcc structure of pure palladium with lattice expansions proportional to their boron contents. The occurrence of miscibility gaps, i.e., the coexistence of dilute and concentrated phases, points to an energy of attraction between the dissolved particles, in the Pb-B system as well as in the Pd-H system. The filling up of the electron bands seems to be analogous, too, in the two systems, as indicated by the hydrogen absorption capacit15,17,18 and by the suscepti bility of Pd-B alloys.l8 In both types of experiments, boron acts as an electron donor. A chemical method was used to measure the activity of boron in palladium. Boron trioxide was reduced in a moist hydrogen stream: B2O3 + 3H2 = 2B + 3H3O [l] At known activities or partial pressures of boron trioxide, hydrogen, and water, the activity of boron could be calculated from the law of mass action. The equilibrium concentration of boron corresponding to this activity was determined as the weight gain of the sample. EXPERIMENTAL The samples consisted of small pieces of foil of 0.1 mm thickness and about 100 mg weight. The palladium was supplied by DEGUSSA, Germany, and stated to be
Jan 1, 1970
-
South Africa - A Vital Source And Reliable Supplier Of Strategic Minerals
By Denis G. Maxwell
INTRODUCTION It is my intention in this paper to deal with gold, uranium, diamonds, platinum, manganese, chrome, vanadium and heavy mineral sands. These are the most important strategic minerals produced by the Republic of South Africa which are not covered in other sessions of this program. In each case I have high- lighted the statistics and peculiar advantages which combine to make South Africa a vital source of these minerals. Before proceeding to give individual attention to these minerals I believe it would be useful to define what I mean by 'strategic'. The Concise Oxford Dictionary defines strategic in the context of materials as 'essential for war'. However it is commonly used in a much broader sense than this (often, in fact, very loosely) and I prefer to define it as 'concerned with the acquisition and maintenance of power, whether economic, political or military.' A VITAL SOURCE In dealing with the individual minerals I have quoted statistics which are contained in Tables 1, 2 and 3. Table 1 clearly shows the absolute size of the South African mineral industry. However, it can also be used to demonstrate the importance of the industry to the South African economy if compared with the GNP in 1980 of about R60 billion. Table 4 illustrates clearly how important South Africa is as a supplier of these minerals to most of the important industrialized countries of the Western World. Gold If anyone had any doubts about the inclusion of gold in a list of strategic minerals I am sure that the above definition of 'strategic' will convince them that it certainly belongs there. Similarly no one is likely to have any doubt about the fact that South Africa is a vital source of supply. Tables 2 and 3 show that in 1980 we had 51% of the world's reserves and accounted for 55% of world production. The figures for the Western World are considerably higher. The only other major producer, of course, is Russia, with small but significant production in the Pacific Rim area coming from Australia, Canada, Latin America, Papua New Guinea, Philippines and the U.S. All South African mine gold production is shipped in bullion form containing about 88% gold and 9% silver to the Rand Refinery which is a modern refinery with large scale units capable of refining half a ton of bullion at a time. The Refinery is equipped to produce standard 'good delivery' gold as well as 9999 gold and 999 silver. The Refinery also produces the 22 karat blanks which are, used by the South African Mint to produce Kruger Rands. It goes without saying that the South African gold mining industry leads the world in all aspects of deep-level, narrow-reef mining technology. The industry's metallurgists, too, have a record of tenacious and continuing efforts to improve extraction to the level of the present finely honed efficient process used on all the modern mines. Uranium In 1980 South Africa had 14% of the uranium reserves of the Western World and accounted for 14% of production. In view of the paucity of data I am not in a position to estimate figures for the total world. All the other major sources of uranium in the Western World are situated around the Pacific Rim, with the U.S. and Canada already being major suppliers and accounting for 38% and 17% of Western World production in 1980. Australian production at the time was small but they have very large reserves and production is already rising rapidly. The U.S., Canada and Australia account respectively for 22%, 19% and 29% of the uranium reserves of the Western World. South Africa has been a major producer continuously for 30 years. Nearly all the uranium produced, amounting to about 115 000 tons up to the end of 1981, was a by-product or co-product of gold extraction. During that time the industry has frequently led the world in technological innovation, and has established a reputation as a reliable producer of a consistent, high-grade product. In the latter respect, it is helped by the fact that production is marketed by one company, Nuclear Fuels Corporation, which also blends, dries and calcines the product from the individual mines and samples and assays it before shipping. Diamonds Diamonds are the rock on which the South African mineral industry is founded. The discovery of diamonds in 1866 gave rise to the first major mineral industry in the country and the profits from diamond mining helped to finance the gold mining industry 20 years later. Although now overshadowed by gold, diamonds are still very important in the overall picture of mineral production and exports, as can be seen in Table 1. There are really three separate diamond markets - gem, natural industrial, and synthetic - and, to be meaningful, statistics should be provided separately. Unfortunately separate figures are not available. The figures in Tables 2 and 3 show that, for gem and natural industrial together, South Africa ranks third in the world in production and second in reserves. South Africa is a major producer of synthetics and probably ranks second in the world after the U.S. Recently, of course, Australia was the scene of a major diamond discovery and will soon become the only
Jan 1, 1982
-
PART IV - The Kinetics of Beta-Phase Decomposition in Niobium (CoIumbium)-Zirconium
By G. R. Love, M. L. Picklesimer
Aboue 950°C the Nb-Zr system consists of a completely miscible bcc solid solution, commonly called the phase. Between 950 and 600°C, and between 20 and 85 pct Nb, the phase deconlposes, after sunciently long times, into two bcc solid solutions. The pct Zr alloys are conveniently descibecl with T-T-T (time-temperature-transformation) curves having a nose at about 2 hr at 700°C. The reaction rate varies only slowly with zirconium content and negligibly with oxygen contanzination; it is speeded up by a factor of 10 to 15 by 90 pct cold ulork and slowed dou by n factor oj 10 to 30 by a two-hundrecljold increase in grain size. Nb-r alloys with compositions between 40 and 85 pct Nb have been the basis for the majority of commercially important superconducting materials. In part because of their commercial promise, more is known about these alloys than about most other high-field superconducting materials. At the same time, there is considerable disputed or incomplete metallurgical information. For example, although Rogers and tkins' indicate a monotectoid reaction at approximately 600°C and a two-phase 01 + 0, field extending between 20 and 85 pct Nb and to a maximum of 95OGC, erhout' has reported that this entire region would be a single homogeneous B were it not for oxygen contamination. Again, although it has been shown that relatively short-time heat treatments in the vicinity of 700CZ significantly improve the ability of short wire samples to carry high currents in high magnetic fields at 4.2K, these observations have never been fully correlated with the structural change or changes occurring during the anneal. We intend to investigate in detail the effect of metallurgical variables, including heat treatment, on the superconducting properties of hard superconductors. To verify that our experimental techniques are valid and to establish a relative standard against which other materials may be measured, we feel it advisable to know the behavior of the Nb-Zr alloys under a variety of processing conditions. As an initial step toward this goal, we have determined in detail the kinetics of the transformations in Nb-Zr alloys. EXPERIMENT A number of problems had to be solved before beginning any fruitful work on the reaction kinetics in this system. While solving some of these problems, either by chance or by design, small amounts of information were obtained about alloys containing 40, 50, 60, 65, 67, 70, and 75 pct Nb, bal. Zr. In addition, a large range of grain sizes and a range of temperatures considerably greater than the range indicated by Rogers and Atkins phase diagram were examined. We will, however, report in detail only the results obtained for the Nb + 33 pct Zr and Nb + 25 pct Zr alloys at three grain sizes, two levels of oxygen contamination, and the temperature range 550 to 950°C. These data are most complete, but the other data are sufficiently complete to indicate the kind and magnitude of the variation of the transformation kinetics outside this range. The first and most difficult problem encountered in this inquiry was one of sample homogeneity. When Nb-Zr alloys are arc- or electron-beam-melted on a cooled copper hearth, solidification is sufficiently slow that there is appreciable coring in the cast structure and a large variation of grain size across the button thickness. Both these factors significantly affect the apparent reaction rate in the system. A two-step solution to the problem was attempted; an arc-melting and drop-casting technique has been developed by conald that greatly reduces the as-cast grain size and virtually eliminates coring segregation. Ingots made in this way exhibited no detectable (3 pct maximum) zirconium segregation. Before it was evident just how good this technique was, we attempted to supplement it with rather long-time, high-temperature annealing of the cast ingots. This annealing was carried out in evacuated and sealed (seal-off pressures < 1.0 x 106 torr) quartz capsules lined with tantalum foil at 1400 to 1450 C for 8 to 72 hr. There were two principal effects of this treatment: the grain size increased to a fairly uniform 150 p, and the surface and all grain boundaries near the surface acquired a film of a second phase, tentatively identified as an oxide (possibly additionally contaminated with silicon). There was no evidence that this 1400 C treatment had affected the zirconium segregation. High-temperature annealing was subsequently used only for grain-size control, but anneals of longer than 4 hr at temperatures greater than 1000°C were performed in dynamic vacuums (pressure no greater than 1.0 x lo torr). Any contamination resulting from these treatments was well below the limits of detection of our techniques. All samples, as cast, were cold-swaged to at least 85 pct reduction in area. The samples called cold-worked were tested as swaged. The minimum re-crystallization anneal for these alloys was about 12 hr at 1050 C; this produced an equiaxed grain diameter of about 4 to 8 P. Annealing for 4 hr at 1450°C produced a grain size of about 80 to 150 p; and annealing for 4 hr at 1650aC, close to the melting point of many of these alloys, produced a grain size of 0.5 to 1.0 mm. At all temperatures, the larger grain size was
Jan 1, 1967
-
PART IV - Creep of Thoriated Nickel above and below 0.5 Tm
By B. A. Wilcox, A. H. Clauer
The steady-state creep of TD Nickel NL + 2 001 pct TltOz) has been studied orer the telirperatve range 325' to 1100O and the stress range 15,000 to 36,000 psi. At high temperatures (aboue 0.5 T& gran-boundary slzding is the )nost znportant )node of creep deformation, and the steady-state creep rate, is, can be related to stress and temperature by: where Q = 190 kcal pev mole and n has an unusually high value of 40. A creep mechanism based on cross slip of dislocations around The O2 particles can satisfactovily explain the low-temperature (T < 0.5 T,) cveep behavior, and the follo wing relation is applicable: Q, (a) is found to decrease from 57 to 46 kcal per mole as the stress is increased from 32,000 to 36,000 psi. THERE have been a variety of theories proposed to explain the influence of dispersed second-phase particles on the yield strength and flow stress of metals, and these have been reviewed recently by Kelly and icholson.' However, only several attempts2"4 have been made to develop mechanistic treatments which characterize the creep behavior of dispersion-strengthened metals, and to date these have not been fully evaluated experimentally. weertman2 and Ansell and weertman3 proposed a quantitative creep theory for coarse-grairzed dispersion-strengthened metals, based on the concept that the rate-controlling process for steady-state creep was the climb of dislocations over second-phase particles, as suggested by choeck. The theory predicted that the steady-state creep rate, <,, was proportional to the applied stress, a, for low stresses and that is a4 o for high stresses. The activation energy for creep, Q,, was equivalent to that for self-diffusion, Qs.d., in the matrix. Some limited experimental evidence in support of this theory was obtained on a recrystallized Al-Alz03 S.A.P.-type alloy by Ansell and Lenel.6 Ansell and weertman3 also developed a semiquanti-tative theory for high-temperature creep of lineg-rained dispersion-strengthened metals in order to explain their results on an extruded S:A.P.-type alloy, which had a fine-grained fibrous structure. They suggested that the rate of dislocation generation from grain boundaries was the rate-controlling process, and fitted their results to the equation: where Q, was found to be 150 kcal per mole, i.e., QC- 4Q,.d. in aluminum. Similar high activation energies for creep7-'' and tensile deformation" of dispersion-strengthened alloys have been observed by other investigators for S.A.P.,'" indium-glass bead omosites, and Ni + A1203 alls.' There is no general agreement regarding the mechanisms involved in the creep of dispersion-strengthened metals, and this is due in part to the lack of detailed studies relating the structures of crept specimens to the mechanical behavior. The present investigation on thoriated nickel was undertaken with the aim of studying the structural changes which occur during creep of a dispersion-strengthened alloy and rationalizing the observed mechanical behavior in terms of the creep structures. EXPERIMENTAL METHODS The material used in this investigation was 1/2-in.-diam TD Nickel bar, which contained 2.3 vol pct Tho,. Obtained from E. I. duPont de Nemours & Co., Inc. The final fabrication treatment by DuPont consisted of -95 pct reduction by swaging followed by a 1-hr anneal at 1000°C. Transmission and replica electron microscopy revealed that the material had a fine-grained fibered structure with an average transverse grain size of -1 p and a longitudinal grain size of 10 to 15 p. Selected-area diffraction indicated that the fiber axis was parallel to (OOl), in agreement with the results of Inman eta1." All creep specimens were vacuum-annealed at 1300°C for 3 hr prior to testing. Transmission electron microscopy showed that the only structural change due to annealing was a slight decrease in dislocation density, confirming the reported high degree of structural stability.13 Furthermore, recrys-tallization or grain growth during creep was never observed. The structure typical of uncrept material (after the 1300 C, 3-hr anneal) is shown in Fig. 1. The grain boundaries are predominantly high angle and. although some areas show a tangled cell structure, the grain interiors are relatively dislocation-free. Individual dislocations are strongly pinned by the Tho2 particles; i.e., very rarely did dislocations move within a thin foil. The grey "halos" around some of the larger particles which protrude out of the foil surface arise from contamination in the electron microscoge. The Tho, particle size ranged from -100 to IOOOA, and the distribution is shown in Fig. 2. The technique used to obtain the data in Fig. 2 consisted of dissolving the nickel matrix in acid, collecting the Tho2 particles on cellulose acetate, and measuring about 1000 particle diameters in the electron microscope. Similar results were obtained by measuring about 600 particles in thin foils, an; the average particle size was found to be 2r, = 370A. Using the data in Fig. 2 (annealed structure), the mean planar center-to-center particle
Jan 1, 1967
-
Part IX – September 1969 – Papers - Precipitation Hardening of Ferrite and Martensite in an Fe-Ni-Mo Alloy
By D. T. Peters, S. Floreen
The age hardening behavior of an Fe-8Ni-13Mo alloy was studied after the matrix had been varied to produce either ferrite, cold u~orked ferrite, or nzassive nzartensite. The aging behavior of the cold worked ferrite and murtensite structures were very similar. The martensite aging kinetics were much different from those observed in earlier studies of aging of maraging steels, even though the martensite wzatri.r had the same dislocation structure as those found in maraging steels. The results suggest that the previously observed precipitation kinetics of maraging steels ?nay have been controlled by the nucleation be-haviov, which in turn were dictated by the alloy compositions and the resultant identities of the precipitating phases. IT is well known that the rate of precipitation from solid solution depends not only on the degree of super-saturation, but also on the density and distribution of dislocations in the matrix structure. These imperfections often act as nucleation sites, and may also enhance atomic mobility. 'Thus, the presence of dislocations is important since the type and distribution of precipitates may be determined by them. The precipitate density and morphology in turn affects the mechanical properties of the alloy. A number of studies have been devoted to the precipitation characteristics in various types of maraging steels.'-" These are iron-base alloys containing 10 to 25 pct Ni along with other substitutional elements such as Mo, Ti, Al, and so forth, that are used to produce age hardening. The carbon contents of these steels are quite low, and carbide precipitation is not believed to play any significant role in the aging reactions. After solution annealing and cooling these alloys generally transfclrm to a bcc lath or massive martensite structure characterized by elongated martensite platelets that are separated from each other by low angle boundaries, and that contain a very high dislocation den~it~.~~~~~~~~-~~ Age hardening is then conducted at temperatures on the order of 800" to 1000°F to produce substitutional element precipitation within the massive martensite matrix. Most of the aging studies to date have revealed several common traits in these alloys, regardless of the particular identity of the precipitation elements. Generally hardening has been found to be extremely rapid, with incubation times that approach zero. The agng kinetics, at least up to the time when reversion of the martensite matrix to austenite begins to predominate, frequently follow a AX/~~ = ktn type law, where x is hardness or electrical resistivity, t is the time, and k and n are constants. The values of n are frequently on the order of 0.2 to 0.5, which are well below the idealized values of n based on diffusion controlled precipitate growth models. Finally, the observed activation energy values are typically on the order of 30 kcal per mole, and thus are well below the nominal value of about 60 kcal per mole found for substitutional element diffusion in ferrite. The common explanation of these observations is that the precipitation kinetics are controlled by the massive martensite matrix structure. Thus, the absence of any noticeable incubation time has been attributed, after ~ahn," to the fact that the precipitate nucleation on dislocations may occur without a finite activation energy barrier. The low values of the activation energy are generally assumed to be due to enhanced diffusivity in the highly faulted structure. If this explanation that the precipitation kinetics are dominated by the matrix structure is correct then one should observe a distinct difference in lunetics between aging in a martensitic matrix and aging the same alloy when it has a ferritic matrix. Such a comparison cannot be made with conventional maraging compositions, but could be made with the alloy used in the present study. In addition, the ferritic structure of the present alloy could be cold worked to produce a high dislocation density so that one could determine whether ferrite in this condition would age similarly to martensite. EXPERIMENTAL PROCEDURE The composition of the alloy used in this study was 8.1 pct Ni, 13.0 pct Mo, 0.10 pct Al, 0.13 pct Ti, 0.012 pct C, bal Fe. The alloy was prepared as a 40 lb vacuum induction melt. The heat was homogenized and hot forged at 2100°F to 2 by 2 in. bar, and then hot rolled at 1900°F to $ in. bar stock. The aging lunetics were followed by Rockwell C hardness and electrical resistivity measurements. Samples for hardness testing were prepared as small strips approximately 2 by $ by 4 in. thick. Electrical resistivity was studied on cylindrical samples approximately 2 in. long by 0.1 in. diam. The method for making the alloy either martensitic or ferritic was based on the fact that the alloy showed a closed y loop type of phase diagram. At high temperatures, above approximately 24003F, the alloy was entirely ferritic. Small samples on the order of the dimensions described above remained entirely ferritic after iced-brine quenching from this temperature. In practice, a heat treatment of 1 hr in an inert atmosphere at 2500°F followed by water quenching was used to produce the ferritic microstructure. These samples were quite coarse grained and usually en-
Jan 1, 1970
-
Part XI – November 1968 - Papers - The Determination of Rapid Recrystallization Rates of Austenite at the Temperatures of Hot Deformation
By J. R. Bell, W. J. Childs, J. H. Bucher, G. A. Wilber
A technique for determining recrystallization times as short as 0.10 sec was developed utilizing the "Gleeble", a commercially available testing system designed for the study of short-time, high-temperaLure themal and mechanical processes. The procedure consisted of heating a small tensile specimen to a given temperature of hot deformation, loading to a given reduction in area, unloading, delaying various intervals at temperature, and then reloading- to failure. The magnitude of the ultimate load obtained upon reloading decreased with delay lime as recrys-lallization proceeded. The technique was applied to austenite recrystallization in AISI 1010 and AISI 1010 uith 0.02 pct Cb steels. For each steel the reduction in area given the specimen on the first pull was mainlairred at 30 ± 5 pct and recrystallization times deterntined at various temperatures. The results indicaled a significantly slower rate of recrystallization for the columbium-modified composition, suggested the presence of- a recovery stage in the softening process , and indicated a greatly increased softening rate at a temperatuve where significant allotropic transformation to a partially ferritic Structure could occur. In recent years increasing attention has been paid to the fact that the process of recrystallization of austenite deformed at elevated temperatures is far from instantaneous at many practical hot-working temperatures.1-3 This realization has given rise to such terms as hot cold-working1 or warm-working,2 These terms generally describe processes where the recrystallization rate at the temperature of deformation is slow enough to have an appreciable effect on mechanical properties despite a relatively high deformation ternperature. The mechanical properties of interest can be either the properties at the deformation temperature as in hot-workability studies4 or the room-temperature properties after cooling as in the many recent studies of various thermomechanical processes172 where heat treatment and deformation are intentionally combined to give a unique set of room-temperature properties. Because of this interest in processes where the austenite recrystallization kinetics can be an important variable, the development of quantitative methods of following the course of short-time, high-temperature recrystallization has received increasing attention.l,3,5 The experimental methods to date have, in general, relied upon rapidly deforming the austenite, holding at temperature for various brief intervals, quenching as G.A.WILBER and W. J. CHILDS, Members AIME,are Research-Fellow and Professor, respectively, Rensselaer Polytechnic Institute, Troy, N. Y. J. R. BELL and J. H. BUCHER, Member AIME, are Research Engineer and Research Supervisor, respectively, Graham Research Laboratory, Jones & Laughlin Steel Co., Pittsburgh, Pa. Manuscript submitted March 13, 1968. IMD. rapidly as possible, and then using room-temperature measurements to follow the recrystallization process. Although such methods can be successfully applied to certain alloy steels, the existence of the allotropic transformation during cooling of plain-carbon or low-alloy steels tends to obscure the results. Thus, such room-temperature measurements as hardness and X-ray line widths do not correlate well with the extent of austenite recrystallization before quenching,5 and results based on room-temperature microstruc-tural observations are dependent upon the success in correlating the observed structure with the prior aus-tenitic grain structure.1,3,5 The purpose of the present work was to develop a quantitative method for the determination of short-time, high-temperature recrystallization rates, based on measurements made at the temperature of deformation. EXPERIMENTAL TECHNIQUE The basic technique consisted of heating a small tensile specimen to a given temperature of hot deformation, loading to a given reduction in area, unloading, delaying various intervals at temperature, and then reloading to failure. The data were obtained in the form of traces of load and elongation as a function of time. Due to the high deformation temperature, the strain hardening introduced during initial loading was progressively annealed out with holding time after unloading and the loads obtained upon reloading decreased as this softening proceeded. Although the value of the second load at any Consistent point On the load-elongation curve could have been used as a measure of the degree of softening, the most convenient to use was the ultimate load. The softening indicated by the decrease in the second ultimate load with time is essentially a process of annealing of cold-worked material at a high deformation temperature. Although some recovery grain growth may contribute to such a softening process, it is generally considered that the major softening which must take place to achieve complete removal of substantial Strain hardening will occur by the formation of new, stress-free grains. As the results of this work indicate that essentially complete removal of strain hardening did in fact occur. the primary softening process will be attributed to recrystallization, and specific reference made where it appears that other mechanisms may be contributing to the total observed softening. It would, of course, be of interest to attempt to correlate the results of this work with the actual austenite fraction recrystallized as determined by other techniques. This was not attempted in the present work because it would have required running a large number of additional specimens and, as discussed previously, there is limited assurance that the results would accurately reflect the prior austenite fraction recrys-
Jan 1, 1969
-
Institute of Metals Division - Secondary Recrystallization to the (100) [001] or (110) [001] Texture in 3 ¼ Pct Silicon-Iron Rolled from Sintered Compacts (TN)
By Jean Howard
ThE formation of the (100) [001) texture in 3-1/4 pct Si-Fe strip was first reported by Assmus ef a1.l in 1957. Since then much experimental work has been carried out with a view to establishing the mechanism involved. The papers cited above state that the (100) [001] texture was developed in strip rolled from material melted and cast in vacuum. (The impurity content of the ingot is reported as 0.005 pct.) The present note records that similar results can be obtained in material processed by powder metallurgy. A processing schedule is described.which enables the texture to be formed in strip up to 0.010 in. thick, but there seems no reason why this should not be achieved in thicker strip, provided that large grains are developed after sintering. The materials were prepared from Carbonyl Iron Powder Grade MCP (particle size 5 to 30 p) of the International Nickel Co. (Mond) Ltd. The powder contains about 0.15 pct 0, 0.01 pct C, 0.004 pct N, <0.002 pct S, $0.005 pct Mg and Si, and 0.4 pct Ni— that is, it is substantially free from metallic impurities other than nickel, which is thought to be unimportant in the present work. The silicon powder was 99.9 pct purity, or material of transistor quality (ground in pestle and mortar). The mixed powders (3-1/4 pct Si to 96-3/4 pct Fe) are heated in hydrogen at 350" and 650°C to deoxidize the iron before sintering loose at temperatures between 1350" and 1460°C (depending upon the ultimate thickness of strip required) for up to 24 hr. The object of the high-temperature sinter is to develop a large grain size at this stage. Alternatively, the loose sintering can be done at a lower temperature followed by rolling or pressing and then annealing at temperatures between 1350" and 1460°C. Both methods produce large grains, which remain large throughout the process. The compact is then hot-rolled to approximately 1/8 in. with high-temperature interstage anneals if necessary. This step is taken to avoid intercrystalline cracking which would occur if the material of such large grain size were cold-worked. The bar is then annealed at 1050°C and reduced to its final thickness by approximately 50-pct reductions and 1050°C interstage anneals. Throughout the process the dew point of the hydrogen furnace atmosphere is maintained at about -40°C. Samples were annealed in hydrogen at various temperatures and times. Secondary recrystalliza-tion to (100) [001] was developed on the thinner material (i.e., up to 0.002 in.) by annealing in hydrogen at 1050" to 1200°C with a dew point of - 40°C or in vacuum (10-5 Torr) at 1050°C. With the thicker materials (i.e., up to 0.010 in.) the best results were obtained by annealing in hydrogen at 1200°C with a dew point of - 55°C. Complete secondary recrystal-lization to (100) [001] textures was obtained. Above these temperatures secondary recrystallization to (110) [001] tended to develop. The final annealing of samples was normally carried out with the samples placed between recrystal-lized alumina plates, but some experiments were performed with the samples suspended so that their surfaces were not in contact with anything except hydrogen, and these were equally successful in developing secondary crystals. An approximate determination of the proportion of material (before secondary recrystallization took place) having crystals with the (100) or (110) planes in or near the rolling plane showed that 11 pct of the sample had (100) and 16 pct (110). The method used for the determination is described below. A sample was annealed at a temperature just below the secondary recrystallization temperature and etched to reveal the (100) planes. The approximate area covered by crystals having (100) or (110) in or very near the surface was measured on the screen of a Vickers projection microscope. This was repeated for twenty positions chosen at random and a mean of the results calculated. The main hindrance to developing the secondary crystals in the thicker materials was the difficulty of obtaining a large enough initial primary grain size before secondary recrystallization. This was overcome by increasing the particle size of the silicon powder used. During the course of the work, it had been observed that the larger the grain size after sintering the more likely it was that the material would be successful in developing secondary crystals at a later stage. An experiment was therefore carried out to determine whether the material with the larger grain was more successful in developing secondary crystals due to the large grain produced at the sintering state per se or whether it was due to the greater reduction of silica brought about when the sintering temperature was raised in order to increase the grain size. A comparison was made between two compacts, one of which was made with silicon powder of 60 to 100 mesh, the other with silicon powder which was finer than 200 mesh. F?r this experiment, use was made of a phenomenon previously observed that the larger the particle size of the silicon powder employed in making a compact, the larger is the grain size of the compact. The silicon powder was ground
Jan 1, 1964
-
Part IV – April 1968 - Papers - Phase Relations in the System SnTe-SnSe
By A. Totani, S. Nakajima, H. Okazaki
The phase diagram for the SnTe-SnSe system has been studied in the temperature range from 300° to 900°C by differential thermal and quenching techniques. The X-ray measurements were made on quenched specimens. High-temperature diffraction was also made to study the phase transition in SnSe. The system is proved to be of a eutectic type in which no intermetallic compound exists. The eutectic point is at the composition SnTeo.55 Seo.45. the eutectic temperature being 755°C. Solid solubility limits are SnTeo.6Seo.r and SnT eo. 3s Seo.6s at the eutectic temperature, and change almost linearly to SnTeo.aaSeo.lz and SnTeo.18 Seo.az as temperature decreases to 300°C. It was shown that the SnSe phase has a phase transition of the second order at about 540°C and that the transition temperature decreases with increase of the SnTe content. THERMOELECTRIC properties of tin telluride (SnTe) and tin selenide (SnSe) have been studied extensively in recent years. The variation of physical properties with composition could be of interest if these compounds form an appreciable crystalline solution. The purpose of present investigation is to confirm the formation of crystalline solution or intermetallic compound, if any, and to establish the phase diagram for this system. The crystal structure of SnTe is NaCl type with a cubic unit cell1 (a = 6.313A). The crystal of SnSe having an orthorh2mbic unit cellz (a = 11.496, b = 4.1510, and c = 4.4437A) is isomorphous with tin sulfide (SnS) which has a distorted sodium chloride structure. It has been known that SnSe has a phase at at 540°C; the transition has been assumed to be of the second order. As far as we know, only two studies on the SnTe-SnSe pseudobinary system have been reported. The conclusion obtained in these papers is that, in the composition regions near SnTe and SnSe, the system forms a crystalline solution of the SnTe structure and the SnSe structure, respectively, and that, in the intermediate region, both phases coexist. However, neither the variation of the solid solubility vs the temperature nor the liquidus and solidus were investigated. Hence present writers have attempted to determine the phase diagram of the system by differential thermal analysis (D.T.A.) and X-ray diffraction. EXPERIMENTAL Sample Preparation. Starting materials, SnTe and SnSe, were prepared by the direct fusion of commercially available high-purity (99.999 pct) elements. Stoichiometric amounts of each couple Sn-Te or Sn-Se were weighed into a clear fused silica ampule. After evacuation to a pressure below 10-3 mm Hg, the am- pule was sealed, and annealed at 900°C for 5 hr. The melt was quenched in water. X-ray analysis confirmed the formation of a single phase of SnTe or SnSe. The other samples, SnTel-,Sex were synthesized from these SnTe and SnSe by mixing them in the required ratio, followed by annealing at 900°C and quenching. These samples were used directly for D.T.A. For X-ray measurements, samples were annealed at 700°, 600°, or 500°C for 100 hr or at 300°C for 150 hr, and then quenched in water. It was found that the lattice constants of the SnTe phase annealed for 150 hr at temperatures above 500°C did not differ from those annealed for 100 hr at the same temperatures. However the X-ray phase analysis showed that at 300°C the annealing for 150 hr was necessary to attain a true equilibrium state. D.T.A. The solid-liquid equilibrium temperature was determined from D.T.A. measurements. The sample was sealed in an evacuated silica tube and molybdenum powders sealed in an another tube were used as a reference material. The sample and the reference tube were placed in a nickel block and were heated from room temperature to 900°C at a rate of 3°C per min and then cooled down at the same rate to 600°C. Thermocouples for these measurements were Pt-Pt. Rh (10 pct) and the error of temperature measurements was within + l0C. D.T.A. curves were obtained on a two-pen recorder and an automatic controller (PID type) was used for the program of heating and cooling. When temperature reaches the solidus from the low-temperature side, there appears an endothermic peak. The solidus temperature was determined by extrapolation of the straight portion of the starting flank of this peak to the base line. In a similar way, the liquidus temperature was determined from an exothermic peak on D.T.A. cooling curve. In the case of supercooling, if any, its degree can be estimated from the magnitude of the abrupt temperature rise. X-Ray . X-ray powder patterns were taken by a diffractometer using CuK, radiation. Since the SnSe crystal is cleaved easily, the powders become flaky when SnSe-rich samples are ground in an agate
Jan 1, 1969
-
Geophysics (f06e1817-cf76-46d0-a83b-a237c69f1f0e)
By LeRoy Scharon
EACH year it becomes apparent that geophysical activities in the fields of mining and engineering are increasing in the number and variety of applications. Many mining companies are including, as part of their exploration programs, geophysical surveys. The value of geophysics in highway and structural foundation investigations has been realized and is now an important part of subsurface investigations in conjunction with soil and rock borings. United States of America One of the major orebody discoveries of the year is that of the Grace mine near Morgantown in Berks County, Pa. This orebody, now under development by the Bethlehem Steel Co., was discovered by an airborne magnetometer survey carried out by the Aero Service Corp. of Philadelphia. The orebody, the geological occurrence of which is similar to those existing at Cornwall, Pa., was found at a depth of 1500 ft under a cover of Triassic sediments and is reported to have a reserve of well over 100 million tons. Shaft sinking and other construction work has started at the site. Resistivity work was carried out at proposed dam sites in New York and in connection with the search for fluorspar veins in Kentucky. Spontaneous polarization investigations were pursued in the Appalachian region at various localities from North Caro¬lina up into Virginia. This work was done in connection with the search for sulphide-bearing structures. Several indications were proven by subsequent drilling to correspond to unknown sulphide deposits, a few of these occurring in the vicinity of properties long under exploitation. Refraction seismic methods applied to bedrock depth determinations as related to water problems on the Marquette Range and the extension of the. regional gravity survey on the Menominee Range to learn the major structural features of the area have been reported by, Lloyal O. Bacon. A gravity survey has been completed in the vicinity of Tioga, Bradford County, Pa. with a gravity profile being observed from Tioga east to the Delaware basin. The Indiana Geological Survey is concerned with a state-wide gravity survey. Judson Mead, University of Indiana, reports that the bulk of the State Survey's geophysical work, however, has been "seismic refraction work in connection with drift thickness problems. The survey has made almost 1000 determinations in areas of moderately thick drift. The results of this work are of interest to both the coal mining industry and to the stone industry." In the southeastern Missouri lead belt, magnetic electrical resistivity, and electromagnetic applications for the discovery of new lead deposits have been used with success. A gravity survey of the residual-barite deposits in Washington County, Mo., was made during the summer season with preliminary computations of tonnages checking with tonnages mined. Robert M. Dryer, of the University of Kansas has had considerable success in mapping structural features in southwestern Kansas with the gravity meter and is now engaged in tracing shoestring sands in eastern Kansas by resistivity surveys. Several, foundation sites were investigated in greater St. Louis using electrical resistivity and seismic refraction methods with success. A minimum amount of drilling data was available for checking and interpreting the geophysical results (Fig. 1). It is to be noted that geophysical methods are finding a place in subsurface investigations for highway and foundation problems. Interest has been so keen in this field that the American Society for Testing Materials, at its annual meeting in June of this year, devoted one session of its symposium on surface and subsurface reconnaissance to geophysical papers involving the application of the electrical resistivity and seismic refraction methods to subsurface studies. At least three major mining companies in the United States have entered the field recently in geochemistry. The program of research and development of geochemical techniques by the U. S. Geological Survey continues. Experimental field projects were conducted over lead-silver, cobalt, copper and zinc deposits in Idaho, Oregon, California, Wisconsin and Montana. Similar experiments were carried on by M. P. Nackowski in the Illinois-Kentucky fluorspar district and in the Tri-State Zinc district by R. Maurice Tripp with favorable results. Geophysical activities of the U. S. Geological Survey for 1951 were extensive and varied. About 21,000 miles of airborne magnetic and 10,000 miles of airborne radioactivity traverse were flown in 1951 by the U. S. Geological Survey. A total of 35,000 miles of aeromagnetic traverse were compiled, 57 aeromagnetic maps were published and 14 preliminary maps were placed on open file. Airborne surveys were made in Aroostook County, in the Katahdin and Dead River areas in Maine; in northwest Washington; over the Mother Lode district in California; in northeastern and northwestern Minnesota; and in the New York-New Jersey highlands. Of special interest were the surveys in Washington, where highly magnetic Eocene lavas gave information on structures in the overlying Miocene sedimentary rocks and in northeastern Minnesota over the Duluth gabbro. The latter survey was made following the discovery of nickel-copper mineralization in the gabbro near its contact with the Virginia slate. The principal ground geophysical surveys for metalliferous deposits and related purposes were made in the Colorado Plateau region, where electrical surveys assisted in prospecting; in Aroostook County, Maine, where ground magnetic surveys, following aeromagnetic surveys, have permitted tracing
Jan 1, 1952
-
Part I – January 1969 - Papers - An Energy Expression for the Equilibrium Form of a Dislocation in the Line Tension Approximation
By Craig S. Hartley
An approximate expression is obtained for the energy of a closed dislocation loop in equi1ibriu)n with a constant net stress. The result obtained is valid for loops in isotropic or anisotropzc materials provided that they are suJficiently large that the energy per unit length of a segment of the loop can be approximated by that of an infinite straight dislocation tangent to the loop. It is shown that this approximation leads to very close agreement with a more rigorous calculation of the elastic energy of a circular glide loop. The Gibbs-Wulff Form, GWF, of a dislocation is the closed planar loop which has the smallest elastic self-energy of all possible loops having the same Burgers vector and enclosing a fixed area, A.' The energy of such a loop is related to the net resolved shear stress* required to expand the loop and to the stress required to activate a Frank-Read source.223 In the following sectiorls the problem of determining the form of the GWF is discussed and an approximate method for calculating its elastic self-energy is presented. It is demonstrated that the approximations employed lead to no serious errors when applied to a calculation of the elastic energy of a circular glide loop. This method is then used to obtain a closed form expression for the energy of GWFs in isotropic and anisotropic materials. THEORY Burton, Frank, and cabrera4 have proved that the relationship of the equilibrium shape of a two-dimensional array of atoms under the influence of the Gibbs free energy associated with unit length of its boundary, G(O), is that the polar plot of G(0) vs 0 is proportional to the pedal of the GWF.* The angle 0 is measured "The pedal of the polar graph ofG(0) vs0 is the envelope of tangents to the eraph.relative to some crystallographic reference direction. The difficulty in applying this result to a closed dislocation loop arises from the self-interaction of the loop. For a dislocation the energy analogous to G(0) is a function of the total configurati~n.~ Consequently the relation which determines the GWF is an integro-differential equation rather than the simple differen- tial equation which results when G(8) is a function of 0 alone. Mitchell and smialek3 and Brown~ have used the self-stress concept introduced by ~rown' to calculate the shapes of dislocations in equilibrium with an applied stress. In this approach the glide force on an element of the dislocation loop due to the interaction of the element with the rest of the loop is equated to the glide force exerted by the local applied stress. The shape of the loop is then adjusted so that the two forces above are equal at all points on the loop. It is possible to calculate the energies of such loops by noting that, for equilibrium with an applied stress, the energy is equal to pijbiAj (summation convention) where bi is the Burgers vector, p.. is the local net stress tensor, and Ai is a vector directed perpendicular to the plane of thd loop with magnitude equal to the area of the loop. Also Brown' has calculated the energy of a hypothetical polygonal GWF using the above technique and anisotropic elasticity. However, his indicated solution for the energy in the general case of an arbitrary GWF is only slightly less involved than an iterative solution of the integrodifferential equation referred to earlier. In the present work the approximation employed by DeWit and Koehler' is used to calculate the energy of a closed loop in equilibrium with an applied stress. That is, the energy of a loop segment, ds, is approximated by the product of ds and the energy per unit length of an infinite, straight dislocation in a cylinder coaxial with the tangent to the loop at the angular position of the segment. This is known as the "line tension" approximation. The inner cutoff radius of the elastic solution defines the core radius, while the outer cutoff radius is determined by some characteristic dimension of the loop. Actually, both of these radii vary with the edge-screw character of the segment. The effective core radius changes because of the orientation dependence of the Peierls width of a dislocation,8 and the outer radius should be the radial distance from the circumference of the loop to the center of symmetry of the area enclosed by the loop.g However, since the energy varies logarithmically with the ratio of these radii while depending directly on the effective elastic constants, only the effect of the latter is considered. This approximation also neglects the self-interaction of the loop segments. For small loops this will doubtless be extremely important, but for large glide loops produced by plastic deformation the self-interaction is not nearly so important in determining the energy of the loop. This point is illustrated by the following calculation of the energy of a circular loop. Consider a circular loop of radius R which lies in the XI - x, plane of an infinite isotropic continuum and whose Burgers vector makes an angle $ with xs. The first-order solution for the elastic self-energy is:'
Jan 1, 1970
-
Surface Owner or Mineral Owner?
By J. R. Schneider
INTRODUCTION Landowners in Texas for many years have freely granted, reserved and leased "oil, gas and other minerals" or interests therein. In recent years we have witnessed much litigation concerning what sub- stances should be included as "other minerals" within the phrase "oil, gas and other minerals," and this question has received the attention of numerous legal scholars. At the South Texas Uranium Seminar held in Corpus Christi, Texas, in September, 1978, Mr. William R. Dodson presented a paper dealing with this very subject and entitled "Uranium - Mineral or Surface? Who Owns It?" In his paper, Mr. Dodson reported on two recent Texas Supreme Court decisions, Acker v. a, 464 S.W.2d 348 (Tex. 1971) and Reed v. Wylie, 554 S.W.2d 169 (Tex. 1977). which held that the particular substance in question in each case is not a mineral within the phrase "oil, gas and other minerals" if substantial quantities of the substance lie so near the surface that production will entail the stripping away and substantial destruction of the surface. Since that time another chapter has been written in the Texas saga of "When is a Mineral not a Mineral?" and it is the intent of this paper to present an update of the Texas law. A review of the early Texas cases so ably covered by Mr. Dodson in his paper will not be repeated, except as is necessary to illustrate the evolution of the legal doc- trine which has been so aptly named "The Surface Destruction Test". BACKGROUND In order to appreciate the genesis of the problem, one must consider that oil and gas production commenced in Texas many years ago, Spindletop came in in 1901. As oil and gas became more valuable, land- owners with considerable frequency sold interest in the oil, gas and mineral estates in their lands, and reserved interest in the oil, gas and mineral estates in their lands when they disposed of their property. Due to the oil and gas background, and perhaps be- cause oil and gas was paramount in the minds of the parties, the traditional language employed in these grants and reservations was "oil, gas and other minerals" or variations thereof. There are literally hundreds of instruments employing this language constituting a link in the chains of title to thous- ands of acres of Texas land. In addition, there are thousands of acres of Texas land held by oil, gas and mineral leases, the primary terms of which have been perpetuated by production, containing similar language in their granting clauses. The severance of the mineral estate from the surface estate results in two separate and distinct estates, each having all of the incidents and attributes of an estate in land. with the surface estate being the serviant estate, and the mineral estate being the dominant estate and having certain easements in the surface estate to explore. produce and remove the minerals. Harris v. Currie. 176 S.W.2d 302, 305 (Tex. 1943). As observed by the court in the Harris case, this is because a grant or reservation of minerals would be wholly worthless if the grantee or reservor co~lld rwt enter upon the land in order to explore for and extract the minerals granted or reserved. Although the Texas law has recognized that an oil and gas lessee has the right to use so much of the surface as is reasonably necessary to produce the minerals. Warren Petroleum Corporation v. Monzingo, 304 S.W.2d 362, 363 (Tex. 1957), recent decisions of the Court have qualified this doctrine. In Getty Oil Company v. Jones. 470 S.W.2d 618 (Tex. 1971). Getty's pumpine, units were interfering with ones self-propelled sprinkler system utilized for irrigating the premises, and Jones sought to require Getty to install the-pumping units in cellars so that the sprinkler system could pass over them. In an effort to accommodate both the surface estate and the mineral estate, the court held (page 622) "...where there is an existing use by the surface owner which would otherwise be precluded or impaired, and where under the established practices in the industry there are alternatives available to the lessee whereby the minerals can be recovered, the rules of reasonable usage of the surface may require the adoption of an alternative by the lessee". Bearing in mind that the "reasonable use doctrine" grew up in the oil and gas industry involving sub- stances which can be produced by methods that do not destroy or deplete the surface estate, the question presented is whether the Texas courts will extend this doctrine to situations where claimants of "other minerals" seek to produce shallow deposits of iron ore, coal, lignite and uranium by surface mining methods which do destroy or deplete the surface estate? The surface destruction test has answered this question in the negative, at least as to iron. coal and lignite. However, the multitude of mineral estates in Texas which have been created by a grant. reservation or lease of "oil, gas and other minerals" will, doubtlessly, continue to fuel the fires of litigation. EARLY TEXAS DECISIONS In view of the evolution of the Surface Destruc- tion Test, an exhaustive review of the early Texas
Jan 1, 1980
-
Part VIII – August 1968 - Papers - Experimental Study of Solidification of Aluminum-Copper Alloys
By V. Koump, T. F. Perzak, R. H. Tien
A series of experiments were carried out in which the rates of propagation of the liquidus and the eutectic fronts Mere measured during essentially one-dimensional freezing of Al-Cu alloys. The dimensions of the ingots were 3 by 5 by 6 in. Three different alloys containing 0.1, 4.5, and 17 pct Cu were used in these experitments. For each alloy the rate of heat removal was varied to give a total jreezing time in the range 3 to 30 min. The results of these measurements cowlpared favorably with the theoretical model of freezing of binary alloys with time-dependent surface temperature. IN engineering analysis of solidification of commercia1 steels and nonferrous alloys it is a common practice to assume that an alloy freezes by propagation of an isothermal solidification front, i.e., essentially as a pure metal. In two recent theoretical investigations'j2 the present authors explored the possibility of a more realistic approach to the problem of solidification of alloys. In the proposed model the freezing of an alloy is assumed to take place by propagation of two isothermal fronts, i.e., the liquidus front and the solidus (or eutectic) front. The region between the two fronts contains both liquid and solid and is referred to as the solid-liquid region. The width and the solid content of the solid-liquid region vary with alloy type, solute concentration, and cooling rate. For a given alloy system, initial concentration of solute, and the mode of heat removal, the proposed model yields the temperature distribution within the solid skin, temperature, solid fraction, and concentration distributions with the solid-liquid region, and the rates of propagation of the liquidus and the solidus fronts. This model is obviously of considerable practical importance in engineering analysis of solidification processes, since it gives a more realistic estimate of skin strength during solidification and a better estimate of the total freezing time. Before the new model can be used with confidence, however, it is necessary to test this model experimentally. The experimental testing of the proposed model is a relatively simple matter since the effects to be measured are large and a relatively simple experiment will suffice. The theoretical model predicts, for example, that during freezing of an alloy containing substitutional type solute (negligible diffusion in the solid during freezing) the solid-liquid region occupies an appreciable portion of the ingot, even at low concentration of solute.' Another prediction of the theo- V. KOUMP, formerly with U. S. Steel Corp., is now with Research and Development Center, Systems and Process Division, Westinghouse Electric Corp., Pittsburgh, Pa. R. H. TlEN is Senior Scientist, Fundamental Research Laboratory, U. S. Steel Corp., Research Center, Monroe ville, Pa. T. F. PERZAK, formerly with U.S. Steel Corp., is now with Fiber Industries, Greenville, S. C. Manuscript submitted March 6, 1968. IMD retical model, easily verifiable by experiment, is that the rate of propagation of the solidus (or eutectic) front increases as the solidus front approaches the center of the slab. This prediction is contrary to well-known behavior of the solidification front during freezing of pure metals, where the rate of propagation of the solidification front decreases with time and freezing is completed at the lowest rate. A rather severe test of the proposed model is provided by comparison of theoretical predictions and experimental measurements of the effects of cooling rate and composition on the rates of propagation of the liquidus and the eutectic fronts. In order to test the soundness of the formulation and the method of solution of the problem of solidification of alloys a series of experiments were carried out in which the rates of propagation of the liquidus and the eutectic fronts were measured during essentially one-dimensional solidification of A1-Cu alloys. The A1-Cu system was chosen strictly as a matter of convenience. Three different alloys containing 0.1, 4.5, and 17 pct Cu were used in these experiments. For each alloy the rate of heat removal was varied to give the total freezing time in the range 3 to 30 min. The results of these measurements are compared with the predictions of the theoretical model of solidification of binary alloys, with time-dependent surface temperature.' Before the experiments described in this paper were undertaken, a serious attempt was made to utilize the measurements of previous investigators to test the theoretical model. In the course of this preliminary study a careful review was made of experiments of Pellini and coworkers3 and Doherty and Melf~rd.~ The measurements in Pellini's work were carried out using a steel containing at least four major components. Evaluation of the solid fraction-temperature relation for this steel (required in the theoretical model) is difficult and uncertain. Doherty and Melford, on the other hand, measured the solid fraction-temperature relation experimentally, but did not give sufficient data to explore the effects of composition and the cooling rates on solidification. Hence it was not possible to utilize these measurements to test our theoretical model. EXPERIMENTAL METHOD The experimental technique used in this investigation differs somewhat from the more conventional techniques employed in solidification studies. This technique was developed primarily to eliminate con-vective mixing in the molten metal caused by pouring of molten metal into the mold. In our experiments A1-Cu alloys were melted directly in the mold. The mold assembly used in solidification experiments is shown in Fig. 1. The mold was fabricated from *-in. stainless-steel sheet. The dimensions of
Jan 1, 1969